[ARB] bucket_no_upscale = false bucket_reso_steps = 64 enable_bucket = true max_bucket_reso = 1584 min_bucket_reso = 327 [Attention] mem_eff_attn = false xformers = true [Basics] clip_skip = 2 max_train_epochs = 60 max_train_steps = 1073741824 pretrained_model_name_or_path = "******" reg_data_dir = "******" resolution = "720,720" seed = 625162727 train_data_dir = "******" [Cache_latents] cache_latents = true vae_batch_size = 1 cache_latents_to_disk = true [Captions] shuffle_caption = true caption_extension = ".txt" keep_tokens = 1 caption_dropout_rate = 0.05 caption_dropout_every_n_epochs = 0 caption_tag_dropout_rate = 0.0 max_token_length = 150 weighted_captions = false token_warmup_min = 1 token_warmup_step = 0 [Data_augmentation] color_aug = false flip_aug = false random_crop = false [Dataset] max_data_loader_n_workers = 8 persistent_data_loader_workers = true dataset_repeats = 1 [Debugging] debug_dataset = false [Deprecated] use_8bit_adam = false use_lion_optimizer = false learning_rate = 0.0002 [Further_improvement] min_snr_gamma = 0 multires_noise_discount = 0.3 multires_noise_iterations = 6 [Huggingface] save_state_to_huggingface = false resume_from_huggingface = false async_upload = false [Logging] logging_dir = "******" log_with = "tensorboard" log_prefix = "lora_" [Lr_scheduler] lr_scheduler_type = "" lr_scheduler = "constant" lr_warmup_steps = 0 lr_scheduler_num_cycles = 1 lr_scheduler_power = 1.0 [LyCORIS] network_module = "lycoris.kohya" network_args = [ "preset=attn-mlp", "algo=lora",] [Network_setup] dim_from_weights = false network_alpha = 2 network_dim = 6 network_dropout = 0 network_train_text_encoder_only = false network_train_unet_only = true network_weights = "******" resume = false [Optimizer] gradient_accumulation_steps = 1 gradient_checkpointing = true max_grad_norm = 1.0 optimizer_args = [ "weight_decay=0.1", "betas=0.9,0.99",] optimizer_type = "AdamW8bit" text_encoder_lr = 0.0006 train_batch_size = 8 unet_lr = 0.0006 [Others] lowram = false training_comment = "narugo1992's automated LoRA training, based on nebulae's config." [Regularization] prior_loss_weight = 1.0 [SDv2] v2 = false v_parameterization = false scale_v_pred_loss_like_noise_pred = false [Sampling_during_training] sample_sampler = "ddim" [Save] output_dir = "******" output_name = "apple_reverse1999" save_every_n_epochs = 3 save_every_n_steps = 1073741824 save_last_n_steps = 200 save_last_n_steps_state = 1 save_model_as = "safetensors" save_precision = "fp16" save_state = false [Training_preciscion] mixed_precision = "fp16" full_fp16 = false full_bf16 = false