File size: 9,117 Bytes
25ec3a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Sample YAML file for configuration.
# Comment and uncomment values as needed. Every value has a default within the application.
# This file serves to be a drop in for config.yml
# Unless specified in the comments, DO NOT put these options in quotes!
# You can use https://www.yamllint.com/ if you want to check your YAML formatting.
# Options for networking
network:
# The IP to host on (default: 127.0.0.1).
# Use 0.0.0.0 to expose on all network adapters
host: 0.0.0.0
# The port to host on (default: 5000)
port: 5000
# Disable HTTP token authenticaion with requests
# WARNING: This will make your instance vulnerable!
# Turn on this option if you are ONLY connecting from localhost
disable_auth: False
# Send tracebacks over the API to clients (default: False)
# NOTE: Only enable this for debug purposes
send_tracebacks: False
# Select API servers to enable (default: ["OAI"])
# Possible values: OAI
api_servers: ["OAI"]
# Options for logging
logging:
# Enable prompt logging (default: False)
prompt: False
# Enable generation parameter logging (default: False)
generation_params: False
# Enable request logging (default: False)
# NOTE: Only use this for debugging!
requests: False
# Options for sampling
sampling:
# Override preset name. Find this in the sampler-overrides folder (default: None)
# This overrides default fallbacks for sampler values that are passed to the API
# Server-side overrides are NOT needed by default
# WARNING: Using this can result in a generation speed penalty
#override_preset:
# Options for development and experimentation
developer:
# Skips exllamav2 version check (default: False)
# It's highly recommended to update your dependencies rather than enabling this flag
# WARNING: Don't set this unless you know what you're doing!
#unsafe_launch: False
# Disable all request streaming (default: False)
# A kill switch for turning off SSE in the API server
#disable_request_streaming: False
# Enable the torch CUDA malloc backend (default: False)
# This can save a few MBs of VRAM, but has a risk of errors. Use at your own risk.
cuda_malloc_backend: True
# Enable Uvloop or Winloop (default: False)
# Make the program utilize a faster async event loop which can improve performance
# NOTE: It's recommended to enable this, but if something breaks, turn this off.
uvloop: True
# Set process to use a higher priority
# For realtime process priority, run as administrator or sudo
# Otherwise, the priority will be set to high
realtime_process_priority: True
# Options for model overrides and loading
# Please read the comments to understand how arguments are handled between initial and API loads
model:
# Overrides the directory to look for models (default: models)
# Windows users, DO NOT put this path in quotes! This directory will be invalid otherwise.
model_dir: models
# Sends dummy model names when the models endpoint is queried
# Enable this if the program is looking for a specific OAI model
#use_dummy_models: False
# An initial model to load. Make sure the model is located in the model directory!
# A model can be loaded later via the API.
# REQUIRED: This must be filled out to load a model on startup!
model_name: command-r-plus-3.2bpw-h6-exl2
# The below parameters only apply for initial loads
# All API based loads do NOT inherit these settings unless specified in use_as_default
# Names of args to use as a default fallback for API load requests (default: [])
# For example, if you always want cache_mode to be Q4 instead of on the inital model load,
# Add "cache_mode" to this array
# Ex. ["max_seq_len", "cache_mode"]
#use_as_default: []
# The below parameters apply only if model_name is set
# Max sequence length (default: Empty)
# Fetched from the model's base sequence length in config.json by default
max_seq_len: 32768
# Overrides base model context length (default: Empty)
# WARNING: Don't set this unless you know what you're doing!
# Again, do NOT use this for configuring context length, use max_seq_len above ^
# Only use this if the model's base sequence length in config.json is incorrect (ex. Mistral 7B)
#override_base_seq_len:
# Load model with tensor parallelism
# If a GPU split isn't provided, the TP loader will fallback to autosplit
# Enabling ignores the gpu_split_auto and autosplit_reserve values
#tensor_parallel: True
# Automatically allocate resources to GPUs (default: True)
# NOTE: Not parsed for single GPU users
gpu_split_auto: True
# Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0)
# This is represented as an array of MB per GPU used
autosplit_reserve: [0]
# An integer array of GBs of vram to split between GPUs (default: [])
# Used with tensor parallelism
# NOTE: Not parsed for single GPU users
#gpu_split: [20.6, 24]
# Rope scale (default: 1.0)
# Same thing as compress_pos_emb
# Only use if your model was trained on long context with rope (check config.json)
# Leave blank to pull the value from the model
#rope_scale: 1.0
# Rope alpha (default: 1.0)
# Same thing as alpha_value
# Leave blank to automatically calculate alpha
#rope_alpha: 1.0
# Enable different cache modes for VRAM savings (slight performance hit).
# Possible values FP16, Q8, Q6, Q4. (default: FP16)
cache_mode: Q4
# Size of the prompt cache to allocate (default: max_seq_len)
# This must be a multiple of 256. A larger cache uses more VRAM, but allows for more prompts to be processed at once.
# NOTE: Cache size should not be less than max_seq_len.
# For CFG, set this to 2 * max_seq_len to make room for both positive and negative prompts.
# cache_size:
# Chunk size for prompt ingestion. A lower value reduces VRAM usage at the cost of ingestion speed (default: 2048)
# NOTE: Effects vary depending on the model. An ideal value is between 512 and 4096
chunk_size: 1536
# Set the maximum amount of prompts to process at one time (default: None/Automatic)
# This will be automatically calculated if left blank.
# A max batch size of 1 processes prompts one at a time.
# NOTE: Only available for Nvidia ampere (30 series) and above GPUs
#max_batch_size:
# Set the prompt template for this model. If empty, attempts to look for the model's chat template. (default: None)
# If a model contains multiple templates in its tokenizer_config.json, set prompt_template to the name
# of the template you want to use.
# NOTE: Only works with chat completion message lists!
#prompt_template:
# Number of experts to use PER TOKEN. Fetched from the model's config.json if not specified (default: Empty)
# WARNING: Don't set this unless you know what you're doing!
# NOTE: For MoE models (ex. Mixtral) only!
#num_experts_per_token:
# Enables fasttensors to possibly increase model loading speeds (default: False)
fasttensors: true
# Options for draft models (speculative decoding). This will use more VRAM!
#draft:
# Overrides the directory to look for draft (default: models)
#draft_model_dir: models
# An initial draft model to load. Make sure this model is located in the model directory!
# A draft model can be loaded later via the API.
#draft_model_name: A model name
# The below parameters only apply for initial loads
# All API based loads do NOT inherit these settings unless specified in use_as_default
# Rope scale for draft models (default: 1.0)
# Same thing as compress_pos_emb
# Only use if your draft model was trained on long context with rope (check config.json)
#draft_rope_scale: 1.0
# Rope alpha for draft model (default: 1.0)
# Same thing as alpha_value
# Leave blank to automatically calculate alpha value
#draft_rope_alpha: 1.0
# Enable different draft model cache modes for VRAM savings (slight performance hit).
# Possible values FP16, Q8, Q6, Q4. (default: FP16)
#draft_cache_mode: FP16
# Options for loras
#lora:
# Overrides the directory to look for loras (default: loras)
#lora_dir: loras
# List of loras to load and associated scaling factors (default: 1.0). Comment out unused entries or add more rows as needed.
#loras:
#- name: lora1
# scaling: 1.0
# Options for embedding models and loading.
# NOTE: Embeddings requires the "extras" feature to be installed
# Install it via "pip install .[extras]"
embeddings:
# Overrides directory to look for embedding models (default: models)
embedding_model_dir: models
# Device to load embedding models on (default: cpu)
# Possible values: cpu, auto, cuda
# NOTE: It's recommended to load embedding models on the CPU.
# If you'd like to load on an AMD gpu, set this value to "cuda" as well.
embeddings_device: cpu
# The below parameters only apply for initial loads
# All API based loads do NOT inherit these settings unless specified in use_as_default
# An initial embedding model to load on the infinity backend (default: None)
embedding_model_name:
|