File size: 13,754 Bytes
5b0112e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7defdca84e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7defdca84ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7defdca84f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7defdca85000>", "_build": "<function ActorCriticPolicy._build at 0x7defdca85090>", "forward": "<function ActorCriticPolicy.forward at 0x7defdca85120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7defdca851b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7defdca85240>", "_predict": "<function ActorCriticPolicy._predict at 0x7defdca852d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7defdca85360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7defdca853f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7defdca85480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7defdcc2bf80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695002018967888988, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDwk71cVz+6wgRjurNsYbUt+w07zneGOQAAgD8AAIA/zViQO0jlj7oCiB8znL1VqnO667od+M2zAACAPwAAgD8A4B89XCdCukLV5rKMCjQv4p0iu6uEkDMAAIA/AACAPxAbcb7ogSQ/fRHqvNTtmL5bZR2+KOnMPQAAAAAAAAAA82nSPUtAST+Imtq9PQGZvp9jzDwmCtO9AAAAAAAAAABjA2G+ceVFPy5uHL3beqS+OZZtvl47yj0AAAAAAAAAAM0c7Ltcc0q6yFlRMy/KfS5FJ4m5KOHRswAAgD8AAIA/GpwOPZ9zuj8mi1M+GXqVvSmzmz0uevQ9AAAAAAAAAAAAKZI8aaIEPzKYVb2Jj3y+ZVOavcl1v7wAAAAAAAAAAM2sQTowi64/OP7xO0TxAb+emlU7OVWDPAAAAAAAAAAA2m0kPjzYpz4GYI2+Wb2gvvvIHL6lxlk9AAAAAAAAAADza7O97CGPuzOhTz5SbCu+Owb9vBiPX78AAIA/AACAP5pZnjrshaE85gweO+fsCL4cecW7mBUYPQAAAAAAAAAAZjCCvKSgN7nTD009qmXBvSnozzuwrQi/AAAAAAAAgD/m9QG9n13Fu6RTrDtQtCI8umAuvWqTDj0AAIA/AACAP83NWj2eo5o+1ejivYbpH76+JuO8yqywPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG6jb8FY+2MAWyUTaMBjAF0lEdAlx2fTb349HV9lChoBkdAcDpvM8ox6GgHTQ0BaAhHQJceuUcGTs91fZQoaAZHQG8CdXtBv75oB02SAmgIR0CXHxsyzolldX2UKGgGR0ByIu9pRGc4aAdNTQFoCEdAlx9+Jk5IYnV9lChoBkdAb+7PtUn5SGgHTR0BaAhHQJcglOafBep1fZQoaAZHQHDKnQUpNK1oB02JAWgIR0CXILT2WY4RdX2UKGgGR0Bw3teLNwBHaAdNtwJoCEdAlyEc274BWHV9lChoBkdAcUuQfp2U0WgHTagCaAhHQJckhzmwJPZ1fZQoaAZHQHEp1l9Sde9oB03hAWgIR0CXJ/bjLjgidX2UKGgGR0BHhzhHbypaaAdNAQFoCEdAlyq+nuRcNnV9lChoBkdAbCoZ4Oc2BWgHTYYBaAhHQJcqziOvMbF1fZQoaAZHQHI/z9CNS61oB02IAWgIR0CXLBGorFwUdX2UKGgGR0Bxl8qG1x82aAdNXwJoCEdAlyxMoYvWYnV9lChoBkdAcXaWUbDMvGgHTdYBaAhHQJcsdLWZqmF1fZQoaAZHQHMYEnPVurJoB00pAWgIR0CXLU/0NBnjdX2UKGgGR0BwGiAUcn3MaAdNJgFoCEdAly94SteUp3V9lChoBkdAchMDP4VRDWgHTVsBaAhHQJcvm4SYgJV1fZQoaAZHQHDvFbu+h5BoB00vAWgIR0CXL8E7GNrCdX2UKGgGR0Bx8ABFNL13aAdNKgFoCEdAly/yBshxHXV9lChoBkdAcqy1eBxxUGgHTVEBaAhHQJcwGNVBD5V1fZQoaAZHQHLxOXNTtLNoB01gAWgIR0CXMFWsRxtIdX2UKGgGR0BwvnechC+laAdNXQFoCEdAlzCZEMLF43V9lChoBkdAVPdNCZ4Oc2gHS7ZoCEdAlzFnO0LMLXV9lChoBkdAbx83iJfplmgHTWMBaAhHQJczyuEEkjZ1fZQoaAZHQHBs0pEx7AtoB00xAWgIR0CXNAi0OVgQdX2UKGgGR0Bt4QJPZZjhaAdNIAFoCEdAlzUO3UhFE3V9lChoBkdAbnsenyd4FGgHTTQBaAhHQJc26FL39Jl1fZQoaAZHQHFdMA/9pAVoB00BAWgIR0CXOFsfq5bydX2UKGgGR0BxhhAJLM9saAdNVAFoCEdAlziRHww0wnV9lChoBkdAbFyzZYgaFWgHTU8BaAhHQJc5SFBY3eh1fZQoaAZHQHKCiuU2UB5oB02GAWgIR0CXOmMs6JZXdX2UKGgGR0Bwl/uv2Xb/aAdNUgFoCEdAlzvKUJOWSnV9lChoBkdAcYnOTq0MPWgHTUwBaAhHQJc8yvwEyL11fZQoaAZHQHAJkJa7mMhoB01+AWgIR0CXPgD9fkWAdX2UKGgGR0BuSiS/0ulHaAdNegFoCEdAlz5l1SwW33V9lChoBkdAb4+nEVFhHGgHTSABaAhHQJc/YvPC2tx1fZQoaAZHQHD0nK8tf5VoB03IAWgIR0CXQTAIIF/ydX2UKGgGR0Bwgsq8UVSGaAdNnQFoCEdAl0FQBHTZx3V9lChoBkdAcrWk3CKrJmgHTTwBaAhHQJdBrWd3B551fZQoaAZHQHAH+AiFCcBoB03gAWgIR0CXQb+GGmDUdX2UKGgGR0BwUbc/MW43aAdNdgFoCEdAl0J9SEUTMHV9lChoBkdAcmSiHqNZNmgHTRUBaAhHQJdDic2BJ7N1fZQoaAZHQG7xF9jPOY9oB00RAWgIR0CXRQYfW+XadX2UKGgGR0BkaLOVxCIDaAdN6ANoCEdAl0WrR4QjEHV9lChoBkdAclboc7yQP2gHTXoBaAhHQJdFu6d1+y91fZQoaAZHQG71ZwOvt+loB00dAWgIR0CXRrslb/wRdX2UKGgGR0ByhZcyFfzCaAdNRAFoCEdAl1vfXXiBG3V9lChoBkdAcKkpFTefqWgHTaIBaAhHQJdcVLYf4h51fZQoaAZHQHBd2jCYTkBoB006AWgIR0CXXOEXLvCudX2UKGgGR0BxtxyMkyDaaAdNPQFoCEdAl12C31BdEHV9lChoBkdAcj7Xko4MnmgHS/9oCEdAl16LxqfvnnV9lChoBkdAcIV2rn1WbWgHTRYBaAhHQJdfGERJ2+x1fZQoaAZHQGxoRVIZqEhoB00XAWgIR0CXX/YWtU4rdX2UKGgGR0BxL4deY2KmaAdNLQFoCEdAl2IJaV2RrHV9lChoBkdAcO2eHzpX62gHTQ4BaAhHQJdiIV6/qPh1fZQoaAZHQHE5W9g4OtpoB01QAWgIR0CXYj/336AOdX2UKGgGR0BxjgwyqMm4aAdNcgJoCEdAl2Wjurp7kXV9lChoBkdAcdBJVsDW9WgHTUQBaAhHQJdmbQLNOdp1fZQoaAZHQHGtfL1VYIVoB009AWgIR0CXZs17IDHPdX2UKGgGR0Bxy2Dwpe/paAdN6QFoCEdAl2bR+SbH63V9lChoBkdAcZYyaNMoMWgHTVIBaAhHQJdnbLV4HHF1fZQoaAZHQHIaBJd0JWxoB01fAWgIR0CXaNtwaR6odX2UKGgGR0Bw1055qubJaAdNDwFoCEdAl2ldPLxI8XV9lChoBkdAcNcwN9YwI2gHTScBaAhHQJdpc9ECvHN1fZQoaAZHQG/ofKISDh9oB001AWgIR0CXakkona37dX2UKGgGR0BxmRzijtXxaAdNHQFoCEdAl2qYppeu3nV9lChoBkdAcFUiFj/dZmgHTRsBaAhHQJdq30SRKYl1fZQoaAZHQHBOlJxvNvBoB01eAWgIR0CXaxAsTWXkdX2UKGgGR0Bw7LAnDziCaAdNAAFoCEdAl2vFQyhzvXV9lChoBkdAcZAk8zQ/o2gHTS0BaAhHQJdr1s/IKdB1fZQoaAZHQHCUd5Y5ksloB00TAWgIR0CXbDoBq9GrdX2UKGgGR0BDVskIHC40aAdL3WgIR0CXbVdYnv2HdX2UKGgGR0BujJFXq7iAaAdNPAFoCEdAl21oc/+sHXV9lChoBkdAbnK8xKxs22gHTQABaAhHQJduolSjxkN1fZQoaAZHQHG6sv/R3NdoB00qAWgIR0CXbuWZJCjUdX2UKGgGR0BwXQplSS/1aAdNCwFoCEdAl2+G6PKdQXV9lChoBkdAcnIfjCHh0mgHTQ8BaAhHQJdxoX9BKL91fZQoaAZHQHAgnQ2MsH1oB02AAWgIR0CXcxBq9GqhdX2UKGgGR0BxJ7544ZMtaAdNSAFoCEdAl3NMR+SbIHV9lChoBkdAcpiYgJTl1mgHTTgBaAhHQJdzSn5zo2Z1fZQoaAZHQEdUg7o0Q9RoB00CAWgIR0CXc+hqj8DTdX2UKGgGR0ByYXsHB1s+aAdNRgFoCEdAl3Sd5UtI1HV9lChoBkdAcl0MXaakRGgHTRoBaAhHQJd01fdAPd51fZQoaAZHQHBVEZBLPD5oB01AAWgIR0CXdPzYEnstdX2UKGgGR0BuFdQ2uPmxaAdNXQFoCEdAl3Wx2jfvW3V9lChoBkdAbTM1hLGrCGgHTVoBaAhHQJd2E6q814x1fZQoaAZHQHKVfzJ6po9oB00RAWgIR0CXdoN4qwyJdX2UKGgGR0ByEKCf6Gg0aAdNQgFoCEdAl3afZAY51nV9lChoBkdAcrXIXTEzf2gHTRMBaAhHQJd392A5Jbt1fZQoaAZHQG08SGi5/b1oB01LAWgIR0CXd/5ckdFOdX2UKGgGR0Bx9ELsrupkaAdNDQFoCEdAl3hZNj9XLnV9lChoBkdAciGu89Oh02gHTTQBaAhHQJd4lQizLOl1fZQoaAZHQAgMXSBshxJoB0vbaAhHQJd6QtjCpFV1fZQoaAZHQHChidrftQdoB00cAWgIR0CXemBO58SgdX2UKGgGR0BwXTlkpZwGaAdNEAFoCEdAl3tXUH6dlXV9lChoBkdAcCuzxwyZa2gHTS0BaAhHQJd8R69kBjp1fZQoaAZHQHGBdMK1G9ZoB005AWgIR0CXfHd+G47SdX2UKGgGR0BsaQsunMt9aAdNGAFoCEdAl3zLulXRxHV9lChoBkdAcep5AyEcsGgHTUQBaAhHQJd+lN8E3bV1fZQoaAZHQHKoynHeaa1oB00rAWgIR0CXfwksz2vjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}