--- base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: ICSR_classification_finetuned_mistral_adapters_V100_test results: [] --- # ICSR_classification_finetuned_mistral_adapters_V100_test This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.0845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1907 | 0.1996 | 100 | 1.1196 | | 1.1121 | 0.3992 | 200 | 1.1080 | | 1.1002 | 0.5988 | 300 | 1.0956 | | 1.0871 | 0.7984 | 400 | 1.0866 | | 1.0808 | 0.9980 | 500 | 1.0845 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.0 - Pytorch 2.2.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1