--- language: - en license: mit base_model: mobilebert-uncased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/mobilebert-uncased-biored-finetuned results: [] --- # Dagobert42/mobilebert-uncased-biored-finetuned This model is a fine-tuned version of [mobilebert-uncased](https://huggingface.co/mobilebert-uncased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.7632 - Accuracy: 0.7385 - Precision: 0.2012 - Recall: 0.2384 - F1: 0.215 - Weighted F1: 0.7009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 25 | 1.2345 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 2.0 | 50 | 1.0379 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 3.0 | 75 | 1.0300 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 4.0 | 100 | 1.0228 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 5.0 | 125 | 1.0144 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 6.0 | 150 | 0.9994 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 7.0 | 175 | 0.9681 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 8.0 | 200 | 0.8869 | 0.7147 | 0.2167 | 0.1487 | 0.1303 | 0.6007 | | No log | 9.0 | 225 | 0.8511 | 0.7242 | 0.2064 | 0.1716 | 0.1598 | 0.6298 | | No log | 10.0 | 250 | 0.8187 | 0.7287 | 0.157 | 0.1991 | 0.1754 | 0.653 | | No log | 11.0 | 275 | 0.8046 | 0.7317 | 0.1581 | 0.2035 | 0.1775 | 0.6581 | | No log | 12.0 | 300 | 0.7900 | 0.732 | 0.1935 | 0.2126 | 0.1887 | 0.6688 | | No log | 13.0 | 325 | 0.7865 | 0.734 | 0.2312 | 0.2129 | 0.1828 | 0.6664 | | No log | 14.0 | 350 | 0.7758 | 0.7346 | 0.1604 | 0.2148 | 0.1819 | 0.6672 | | No log | 15.0 | 375 | 0.7958 | 0.7376 | 0.2086 | 0.2141 | 0.1884 | 0.6697 | | No log | 16.0 | 400 | 0.7757 | 0.733 | 0.2002 | 0.2347 | 0.2122 | 0.6904 | | No log | 17.0 | 425 | 0.7874 | 0.7393 | 0.2067 | 0.2196 | 0.2119 | 0.6828 | | No log | 18.0 | 450 | 0.7915 | 0.735 | 0.2043 | 0.2391 | 0.2197 | 0.6959 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0