--- language: - en license: mit base_model: mobilebert-uncased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/mobilebert-uncased-biored-finetuned results: [] --- # Dagobert42/mobilebert-uncased-biored-finetuned This model is a fine-tuned version of [mobilebert-uncased](https://huggingface.co/mobilebert-uncased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 1.0264 - Accuracy: 0.7163 - Precision: 0.1023 - Recall: 0.1429 - F1: 0.1192 - Weighted F1: 0.5979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 13 | 1.6911 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 2.0 | 26 | 1.2080 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 3.0 | 39 | 1.0905 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 4.0 | 52 | 1.0400 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 5.0 | 65 | 1.0439 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 6.0 | 78 | 1.0288 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 7.0 | 91 | 1.0259 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 8.0 | 104 | 1.0180 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 9.0 | 117 | 1.0229 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | | No log | 10.0 | 130 | 1.0186 | 0.7114 | 0.1016 | 0.1429 | 0.1188 | 0.5914 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0