File size: 2,166 Bytes
fecf2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c70e42
 
 
 
 
 
fecf2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ec66
fecf2a6
 
 
 
8a7fc69
fecf2a6
 
 
 
 
 
8c70e42
 
 
 
 
fecf2a6
 
 
 
 
 
8d1de93
fecf2a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- en
license: mit
base_model: xlnet-base-cased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/xlnet-base-cased-biored-augmented
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Dagobert42/xlnet-base-cased-biored-augmented

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the bigbio/biored dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1527
- Accuracy: 0.9501
- Precision: 0.8539
- Recall: 0.8292
- F1: 0.8405
- Weighted F1: 0.95

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Weighted F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| No log        | 1.0   | 20   | 0.2071          | 0.9301   | 0.8427    | 0.744  | 0.7851 | 0.9282      |
| No log        | 2.0   | 40   | 0.1945          | 0.9378   | 0.8251    | 0.8091 | 0.8159 | 0.9368      |
| No log        | 3.0   | 60   | 0.1952          | 0.9403   | 0.8461    | 0.8125 | 0.828  | 0.9397      |
| No log        | 4.0   | 80   | 0.1981          | 0.942    | 0.8486    | 0.8211 | 0.8339 | 0.9414      |
| No log        | 5.0   | 100  | 0.2051          | 0.9436   | 0.8376    | 0.8228 | 0.8296 | 0.943       |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0