--- language: - en license: mit base_model: xlnet-base-cased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/xlnet-base-cased-biored-augmented results: [] --- # Dagobert42/xlnet-base-cased-biored-augmented This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.1566 - Accuracy: 0.9536 - Precision: 0.8629 - Recall: 0.8326 - F1: 0.8434 - Weighted F1: 0.9537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 20 | 0.2106 | 0.9319 | 0.8365 | 0.7555 | 0.7918 | 0.9299 | | No log | 2.0 | 40 | 0.2015 | 0.9358 | 0.8014 | 0.8012 | 0.7993 | 0.9352 | | No log | 3.0 | 60 | 0.1974 | 0.9409 | 0.8459 | 0.81 | 0.8264 | 0.9401 | | No log | 4.0 | 80 | 0.1952 | 0.9433 | 0.8383 | 0.8176 | 0.8272 | 0.9425 | | No log | 5.0 | 100 | 0.2013 | 0.9438 | 0.8469 | 0.8162 | 0.8294 | 0.9434 | | No log | 6.0 | 120 | 0.2012 | 0.9435 | 0.8362 | 0.8135 | 0.8237 | 0.9432 | | No log | 7.0 | 140 | 0.2048 | 0.9459 | 0.8293 | 0.8071 | 0.8173 | 0.945 | | No log | 8.0 | 160 | 0.2070 | 0.9454 | 0.8142 | 0.8132 | 0.8126 | 0.9449 | | No log | 9.0 | 180 | 0.2163 | 0.9456 | 0.8528 | 0.8063 | 0.8279 | 0.9447 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.0