--- language: - en license: mit base_model: xlnet-base-cased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/xlnet-base-cased-biored-augmented results: [] --- # Dagobert42/xlnet-base-cased-biored-augmented This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.1510 - Accuracy: 0.9508 - Precision: 0.8521 - Recall: 0.8278 - F1: 0.8391 - Weighted F1: 0.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 20 | 0.2068 | 0.9335 | 0.8641 | 0.7475 | 0.7976 | 0.9312 | | No log | 2.0 | 40 | 0.1962 | 0.939 | 0.8035 | 0.8046 | 0.8013 | 0.9382 | | No log | 3.0 | 60 | 0.1965 | 0.9429 | 0.8654 | 0.7947 | 0.826 | 0.9415 | | No log | 4.0 | 80 | 0.1964 | 0.9443 | 0.8279 | 0.8174 | 0.8218 | 0.9436 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.0