DandinPower commited on
Commit
1fa03b3
1 Parent(s): dad8ae3

End of training

Browse files
Files changed (2) hide show
  1. README.md +111 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/deberta-v3-base
6
+ tags:
7
+ - nycu-112-2-datamining-hw2
8
+ - generated_from_trainer
9
+ datasets:
10
+ - DandinPower/review_mergeallfeaturetotext
11
+ metrics:
12
+ - accuracy
13
+ model-index:
14
+ - name: deberta-v3-base-maftt
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: DandinPower/review_mergeallfeaturetotext
21
+ type: DandinPower/review_mergeallfeaturetotext
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.6288571428571429
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # deberta-v3-base-maftt
32
+
33
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the DandinPower/review_mergeallfeaturetotext dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.4616
36
+ - Accuracy: 0.6289
37
+ - Macro F1: 0.6302
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 4.5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 1500
63
+ - num_epochs: 5
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
69
+ | 1.0302 | 0.14 | 500 | 1.0771 | 0.5511 | 0.5499 |
70
+ | 1.0412 | 0.29 | 1000 | 0.9406 | 0.5966 | 0.6030 |
71
+ | 0.9494 | 0.43 | 1500 | 0.9546 | 0.5949 | 0.5602 |
72
+ | 0.898 | 0.57 | 2000 | 1.0436 | 0.5957 | 0.5872 |
73
+ | 0.9171 | 0.71 | 2500 | 0.9004 | 0.622 | 0.6074 |
74
+ | 0.8856 | 0.86 | 3000 | 0.8741 | 0.6137 | 0.5990 |
75
+ | 0.9359 | 1.0 | 3500 | 0.8821 | 0.6267 | 0.6245 |
76
+ | 0.8626 | 1.14 | 4000 | 0.8859 | 0.6213 | 0.6200 |
77
+ | 0.7953 | 1.29 | 4500 | 0.8606 | 0.6337 | 0.6271 |
78
+ | 0.8206 | 1.43 | 5000 | 0.8543 | 0.6169 | 0.6202 |
79
+ | 0.8184 | 1.57 | 5500 | 0.9360 | 0.6266 | 0.6165 |
80
+ | 0.8044 | 1.71 | 6000 | 0.8606 | 0.6234 | 0.6227 |
81
+ | 0.7094 | 1.86 | 6500 | 0.8842 | 0.6434 | 0.6387 |
82
+ | 0.8264 | 2.0 | 7000 | 0.9063 | 0.612 | 0.6128 |
83
+ | 0.6951 | 2.14 | 7500 | 0.8782 | 0.6386 | 0.6415 |
84
+ | 0.704 | 2.29 | 8000 | 0.9510 | 0.6326 | 0.6308 |
85
+ | 0.6806 | 2.43 | 8500 | 0.8709 | 0.6413 | 0.6455 |
86
+ | 0.6983 | 2.57 | 9000 | 0.8977 | 0.6426 | 0.6436 |
87
+ | 0.6852 | 2.71 | 9500 | 0.9686 | 0.5984 | 0.6010 |
88
+ | 0.6761 | 2.86 | 10000 | 0.8961 | 0.6386 | 0.6406 |
89
+ | 0.6804 | 3.0 | 10500 | 0.9378 | 0.6307 | 0.6332 |
90
+ | 0.5329 | 3.14 | 11000 | 1.1209 | 0.6341 | 0.6382 |
91
+ | 0.5461 | 3.29 | 11500 | 1.0323 | 0.6393 | 0.6377 |
92
+ | 0.5725 | 3.43 | 12000 | 1.0678 | 0.6334 | 0.6366 |
93
+ | 0.5499 | 3.57 | 12500 | 1.0547 | 0.6374 | 0.6394 |
94
+ | 0.5218 | 3.71 | 13000 | 1.0524 | 0.6453 | 0.6460 |
95
+ | 0.5022 | 3.86 | 13500 | 1.1100 | 0.6363 | 0.6358 |
96
+ | 0.534 | 4.0 | 14000 | 1.0378 | 0.6357 | 0.6386 |
97
+ | 0.3823 | 4.14 | 14500 | 1.3985 | 0.6357 | 0.6357 |
98
+ | 0.4518 | 4.29 | 15000 | 1.3265 | 0.6314 | 0.6318 |
99
+ | 0.4147 | 4.43 | 15500 | 1.3946 | 0.631 | 0.6324 |
100
+ | 0.3936 | 4.57 | 16000 | 1.4649 | 0.6279 | 0.6308 |
101
+ | 0.4339 | 4.71 | 16500 | 1.5322 | 0.6286 | 0.6314 |
102
+ | 0.4448 | 4.86 | 17000 | 1.4890 | 0.629 | 0.6302 |
103
+ | 0.4006 | 5.0 | 17500 | 1.4616 | 0.6289 | 0.6302 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.39.3
109
+ - Pytorch 2.2.2+cu121
110
+ - Datasets 2.18.0
111
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5434e3a3e932e6bf0abc6c05c8af3f5e58c960fdfcf1073f6424145f7c54c434
3
  size 737728508
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:603374e4d10705a264019a5f9b2b8ff0d1612dd97da74dfd0a995736e17446d6
3
  size 737728508