File size: 1,797 Bytes
4317399
 
bb088ce
 
4317399
 
 
 
 
 
 
bb088ce
4317399
 
 
 
 
 
bb088ce
4317399
bb088ce
4317399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
language:
- es
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper openai-whisper-tiny
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper openai-whisper-tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the llamadas ecu911 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3641
- Wer: 67.4731

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 6
- total_eval_batch_size: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.0235        | 7.9365  | 500  | 1.1164          | 94.9283 |
| 0.4493        | 15.8730 | 1000 | 0.6714          | 78.4767 |
| 0.2341        | 23.8095 | 1500 | 0.4407          | 66.3620 |
| 0.1679        | 31.7460 | 2000 | 0.3641          | 67.4731 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1