DaniilSirota commited on
Commit
2209ec4
·
1 Parent(s): 65b08a2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.04 +/- 1.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9b6bc3da134c4a64f6098dd4c170d0f095b519ea6d26b8abb305b4e2a9883d7
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff8949eb0d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7ff894a64630>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677340962303622566,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKKDQPtanEz5zvyc/KKDQPtanEz5zvyc/KKDQPtanEz5zvyc/KKDQPtanEz5zvyc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAByEMv99HoL4qDAO+ioy+v0gBgz9TR9G/63vhvYD+Nz8D7Y4+eBHJvzxWLz9F0S4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzwooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzwooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzwooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4074719 0.14419493 0.65526503]\n [0.4074719 0.14419493 0.65526503]\n [0.4074719 0.14419493 0.65526503]\n [0.4074719 0.14419493 0.65526503]]",
60
+ "desired_goal": "[[-0.54737896 -0.31304833 -0.12797609]\n [-1.4886639 1.0234766 -1.6349891 ]\n [-0.11009964 0.7187271 0.279152 ]\n [-1.5708456 0.6849096 0.6828807 ]]",
61
+ "observation": "[[0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]\n [0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]\n [0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]\n [0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAox3XPHEF972ZT949tnAYvTYgVLzTyDk+el7YPXMlfb25S6w81pMFvuAmwT2FhYM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02625925 -0.12061585 0.10855026]\n [-0.03721686 -0.01294713 0.18143015]\n [ 0.10564895 -0.06180329 0.0210322 ]\n [-0.13044676 0.09431243 0.06421951]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISyNm9nkMCMCUhpRSlIwBbJRLMowBdJRHQKb/tfhMrVh1fZQoaAZoCWgPQwicai3MQnsVwJSGlFKUaBVLMmgWR0Cm/3n7pFCtdX2UKGgGaAloD0MIxR9FnbnXFsCUhpRSlGgVSzJoFkdApv898XvYvnV9lChoBmgJaA9DCJ1KBoAqbgDAlIaUUpRoFUsyaBZHQKb+/rpqynl1fZQoaAZoCWgPQwhvEK0VbQ4RwJSGlFKUaBVLMmgWR0CnAME2YOUddX2UKGgGaAloD0MIIef9f5yQAsCUhpRSlGgVSzJoFkdApwCFUn5SFXV9lChoBmgJaA9DCCh/944aswPAlIaUUpRoFUsyaBZHQKcASN2ki2V1fZQoaAZoCWgPQwgdA7LXu98TwJSGlFKUaBVLMmgWR0CnAAk0zj3mdX2UKGgGaAloD0MIsACmDBxQBcCUhpRSlGgVSzJoFkdApwHNB6a9b3V9lChoBmgJaA9DCBHkoISZtgnAlIaUUpRoFUsyaBZHQKcBkQwsXi11fZQoaAZoCWgPQwhkO99Pjdf8v5SGlFKUaBVLMmgWR0CnAVTvZyuIdX2UKGgGaAloD0MIn1c89UjDB8CUhpRSlGgVSzJoFkdApwEVitq59XV9lChoBmgJaA9DCNTS3AphlQbAlIaUUpRoFUsyaBZHQKcC1gEU0vZ1fZQoaAZoCWgPQwj4wfnUsToUwJSGlFKUaBVLMmgWR0CnApoHs1KodX2UKGgGaAloD0MIKuJ0kq3uAsCUhpRSlGgVSzJoFkdApwJeHYYixHV9lChoBmgJaA9DCDNuaqD5vAjAlIaUUpRoFUsyaBZHQKcCHpvgm7d1fZQoaAZoCWgPQwgkRzoDI+8BwJSGlFKUaBVLMmgWR0CnA9/e1rqMdX2UKGgGaAloD0MIM/ynGyiQDcCUhpRSlGgVSzJoFkdApwOjw+dK/XV9lChoBmgJaA9DCO3yrQ/rzQDAlIaUUpRoFUsyaBZHQKcDZ3cpLEl1fZQoaAZoCWgPQwh1d50N+acRwJSGlFKUaBVLMmgWR0CnAygUL2HtdX2UKGgGaAloD0MIKxcq/1r+CsCUhpRSlGgVSzJoFkdApwVCZ0CA+nV9lChoBmgJaA9DCAmH3uLh/Q3AlIaUUpRoFUsyaBZHQKcFB01ZTyd1fZQoaAZoCWgPQwjmH32TpsEWwJSGlFKUaBVLMmgWR0CnBMvaL4vfdX2UKGgGaAloD0MI38SQnExcBcCUhpRSlGgVSzJoFkdApwSNHpbD/HV9lChoBmgJaA9DCIrkK4GU+AXAlIaUUpRoFUsyaBZHQKcG+3fAKv51fZQoaAZoCWgPQwhXzAhvD6IFwJSGlFKUaBVLMmgWR0CnBsBg3LmqdX2UKGgGaAloD0MIKNcUyOxs/b+UhpRSlGgVSzJoFkdApwaE9nscAHV9lChoBmgJaA9DCPzfERWqSxLAlIaUUpRoFUsyaBZHQKcGRpAUtZp1fZQoaAZoCWgPQwgVrdwLzGoUwJSGlFKUaBVLMmgWR0CnCLDu0CzUdX2UKGgGaAloD0MIbVm+LsMfD8CUhpRSlGgVSzJoFkdApwh1zhgmZ3V9lChoBmgJaA9DCI47pYP1vwzAlIaUUpRoFUsyaBZHQKcIO8V58jR1fZQoaAZoCWgPQwiV1XQ90TUEwJSGlFKUaBVLMmgWR0CnB/052hZhdX2UKGgGaAloD0MIDK65o/+lCsCUhpRSlGgVSzJoFkdApwp4cNpdr3V9lChoBmgJaA9DCKM9XkiHBwbAlIaUUpRoFUsyaBZHQKcKPUNrj5t1fZQoaAZoCWgPQwg33h0Zq+0EwJSGlFKUaBVLMmgWR0CnCgIFFDv3dX2UKGgGaAloD0MI/I7hsZ+VF8CUhpRSlGgVSzJoFkdApwnDh5xBFHV9lChoBmgJaA9DCIRhwJKr2Pq/lIaUUpRoFUsyaBZHQKcMT9kz41x1fZQoaAZoCWgPQwg25J8ZxEcMwJSGlFKUaBVLMmgWR0CnDBTe40/GdX2UKGgGaAloD0MIuOUjKekh97+UhpRSlGgVSzJoFkdApwvZqfvnbXV9lChoBmgJaA9DCHEBaJQuXQjAlIaUUpRoFUsyaBZHQKcLmzt1IRR1fZQoaAZoCWgPQwj27/rMWR/0v5SGlFKUaBVLMmgWR0CnDisir1dxdX2UKGgGaAloD0MIXMmOjUD8BsCUhpRSlGgVSzJoFkdApw3v6InBtXV9lChoBmgJaA9DCKYmwRvS6Pe/lIaUUpRoFUsyaBZHQKcNtITXarZ1fZQoaAZoCWgPQwgoDTUKSUYJwJSGlFKUaBVLMmgWR0CnDXY1gpjMdX2UKGgGaAloD0MIfnGpSltcCcCUhpRSlGgVSzJoFkdApw9a7TUiIXV9lChoBmgJaA9DCF4robskTgnAlIaUUpRoFUsyaBZHQKcPHuAI6bR1fZQoaAZoCWgPQwic3Vomw/EZwJSGlFKUaBVLMmgWR0CnDuKt5le4dX2UKGgGaAloD0MI/HCQEOXLGMCUhpRSlGgVSzJoFkdApw6jSgGr0nV9lChoBmgJaA9DCLzLRXwnJg/AlIaUUpRoFUsyaBZHQKcQaYplSTB1fZQoaAZoCWgPQwg6QDBHjx8BwJSGlFKUaBVLMmgWR0CnEC2ldkaudX2UKGgGaAloD0MIP+JXrOEiC8CUhpRSlGgVSzJoFkdApw/xhH9WIXV9lChoBmgJaA9DCI2chT3tEAjAlIaUUpRoFUsyaBZHQKcPsg0TDfp1fZQoaAZoCWgPQwi+FYkJarj5v5SGlFKUaBVLMmgWR0CnEXWBSUC8dX2UKGgGaAloD0MI6e3PRUNGBsCUhpRSlGgVSzJoFkdApxE5eVs1sXV9lChoBmgJaA9DCEY/Gk6ZOwLAlIaUUpRoFUsyaBZHQKcQ/Q8fV7R1fZQoaAZoCWgPQwhJRzmYTQABwJSGlFKUaBVLMmgWR0CnEL1nM+vAdX2UKGgGaAloD0MI5DCYv0JmCMCUhpRSlGgVSzJoFkdApxJ3vF3pwHV9lChoBmgJaA9DCCkF3V7S6BHAlIaUUpRoFUsyaBZHQKcSO7U5MlF1fZQoaAZoCWgPQwhszVZe8r8CwJSGlFKUaBVLMmgWR0CnEf9q1w5vdX2UKGgGaAloD0MIwHlx4qtNFsCUhpRSlGgVSzJoFkdApxHAKF7D23V9lChoBmgJaA9DCL048dWOAhDAlIaUUpRoFUsyaBZHQKcTkUJOWSl1fZQoaAZoCWgPQwindoapLZUFwJSGlFKUaBVLMmgWR0CnE1VAZ88cdX2UKGgGaAloD0MIM8NGWb8pE8CUhpRSlGgVSzJoFkdApxMZHXmNi3V9lChoBmgJaA9DCNS2YRQED/6/lIaUUpRoFUsyaBZHQKcS2a3I+4d1fZQoaAZoCWgPQwhEp+fdWJD9v5SGlFKUaBVLMmgWR0CnFJvVd5Y6dX2UKGgGaAloD0MI/MVsyaqoCsCUhpRSlGgVSzJoFkdApxRfxc3VC3V9lChoBmgJaA9DCBB1H4DUthjAlIaUUpRoFUsyaBZHQKcUI5FPSD11fZQoaAZoCWgPQwjT3AphNVb9v5SGlFKUaBVLMmgWR0CnE+QnhKlIdX2UKGgGaAloD0MIZrtCHyzjC8CUhpRSlGgVSzJoFkdApxWqNn5BTnV9lChoBmgJaA9DCPH0SlmGWAPAlIaUUpRoFUsyaBZHQKcVbhPTG5t1fZQoaAZoCWgPQwh3TrNAu4MOwJSGlFKUaBVLMmgWR0CnFTHck+otdX2UKGgGaAloD0MIXoHoSZl0BMCUhpRSlGgVSzJoFkdApxTyZ0CA+nV9lChoBmgJaA9DCD0P7s7arQXAlIaUUpRoFUsyaBZHQKcWrMr3Cbd1fZQoaAZoCWgPQwgP1ZRkHc4EwJSGlFKUaBVLMmgWR0CnFnEfLcKxdX2UKGgGaAloD0MI7rQ1IhgHDcCUhpRSlGgVSzJoFkdApxY078vVVnV9lChoBmgJaA9DCA9Dq5MzdAnAlIaUUpRoFUsyaBZHQKcV9XrdFfB1fZQoaAZoCWgPQwg+zjRh+0n/v5SGlFKUaBVLMmgWR0CnF7giFCb+dX2UKGgGaAloD0MIRn2SO2yyE8CUhpRSlGgVSzJoFkdApxd78HfMwHV9lChoBmgJaA9DCKlqgqj7sBDAlIaUUpRoFUsyaBZHQKcXQAmzByl1fZQoaAZoCWgPQwhxj6UPXfAQwJSGlFKUaBVLMmgWR0CnFwCj+JgtdX2UKGgGaAloD0MI+WTFcHUgBMCUhpRSlGgVSzJoFkdApxi7vqkdm3V9lChoBmgJaA9DCNieWRKgpgHAlIaUUpRoFUsyaBZHQKcYf6xgRbt1fZQoaAZoCWgPQwhX6lkQylsTwJSGlFKUaBVLMmgWR0CnGENU4rBkdX2UKGgGaAloD0MIMewwJv09/L+UhpRSlGgVSzJoFkdApxgD2QGOdXV9lChoBmgJaA9DCOJa7WEvNADAlIaUUpRoFUsyaBZHQKcZybjtG/h1fZQoaAZoCWgPQwiWtOIbCp/5v5SGlFKUaBVLMmgWR0CnGY31zySWdX2UKGgGaAloD0MImj474LpiD8CUhpRSlGgVSzJoFkdApxlRx5s0pHV9lChoBmgJaA9DCBYTm49rowjAlIaUUpRoFUsyaBZHQKcZEkrwvxp1fZQoaAZoCWgPQwgxPzc0ZSf9v5SGlFKUaBVLMmgWR0CnGtb1yvLYdX2UKGgGaAloD0MIr83GSswzAcCUhpRSlGgVSzJoFkdApxqbBdld1XV9lChoBmgJaA9DCNoEGJY/nxPAlIaUUpRoFUsyaBZHQKcaXuKoAGV1fZQoaAZoCWgPQwgEyqZc4d0JwJSGlFKUaBVLMmgWR0CnGh+d9UjtdX2UKGgGaAloD0MIvwtbs5VHE8CUhpRSlGgVSzJoFkdApxvfEIgNgHV9lChoBmgJaA9DCHl4z4HlKAPAlIaUUpRoFUsyaBZHQKcbowW3z+Z1fZQoaAZoCWgPQwj68ZcW9Yn7v5SGlFKUaBVLMmgWR0CnG2bPQfITdX2UKGgGaAloD0MIwvaTMT4MD8CUhpRSlGgVSzJoFkdApxsnYjB2wHV9lChoBmgJaA9DCM+Du7N22/6/lIaUUpRoFUsyaBZHQKcc41E3Kjl1fZQoaAZoCWgPQwgo1xTI7BwRwJSGlFKUaBVLMmgWR0CnHKddu5z6dX2UKGgGaAloD0MIL/g0Jy/y/7+UhpRSlGgVSzJoFkdApxxrPfKp1nV9lChoBmgJaA9DCNZXVwVqEQjAlIaUUpRoFUsyaBZHQKccK8s+V1R1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89590f053a5caecf8e8d97a33522874a19c873914f50d55677838c169d2e5a1c
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c638900c7c5febaec73cdcf9e6638ccfcea8c1916662f6c15d0e3db6ecc56e8
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff8949eb0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff894a64630>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677340962303622566, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKKDQPtanEz5zvyc/KKDQPtanEz5zvyc/KKDQPtanEz5zvyc/KKDQPtanEz5zvyc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAByEMv99HoL4qDAO+ioy+v0gBgz9TR9G/63vhvYD+Nz8D7Y4+eBHJvzxWLz9F0S4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzwooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzwooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzwooNA+1qcTPnO/Jz/+MEY8Z7+ePL0zyzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4074719 0.14419493 0.65526503]\n [0.4074719 0.14419493 0.65526503]\n [0.4074719 0.14419493 0.65526503]\n [0.4074719 0.14419493 0.65526503]]", "desired_goal": "[[-0.54737896 -0.31304833 -0.12797609]\n [-1.4886639 1.0234766 -1.6349891 ]\n [-0.11009964 0.7187271 0.279152 ]\n [-1.5708456 0.6849096 0.6828807 ]]", "observation": "[[0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]\n [0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]\n [0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]\n [0.4074719 0.14419493 0.65526503 0.01209664 0.01937838 0.02480494]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAox3XPHEF972ZT949tnAYvTYgVLzTyDk+el7YPXMlfb25S6w81pMFvuAmwT2FhYM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02625925 -0.12061585 0.10855026]\n [-0.03721686 -0.01294713 0.18143015]\n [ 0.10564895 -0.06180329 0.0210322 ]\n [-0.13044676 0.09431243 0.06421951]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISyNm9nkMCMCUhpRSlIwBbJRLMowBdJRHQKb/tfhMrVh1fZQoaAZoCWgPQwicai3MQnsVwJSGlFKUaBVLMmgWR0Cm/3n7pFCtdX2UKGgGaAloD0MIxR9FnbnXFsCUhpRSlGgVSzJoFkdApv898XvYvnV9lChoBmgJaA9DCJ1KBoAqbgDAlIaUUpRoFUsyaBZHQKb+/rpqynl1fZQoaAZoCWgPQwhvEK0VbQ4RwJSGlFKUaBVLMmgWR0CnAME2YOUddX2UKGgGaAloD0MIIef9f5yQAsCUhpRSlGgVSzJoFkdApwCFUn5SFXV9lChoBmgJaA9DCCh/944aswPAlIaUUpRoFUsyaBZHQKcASN2ki2V1fZQoaAZoCWgPQwgdA7LXu98TwJSGlFKUaBVLMmgWR0CnAAk0zj3mdX2UKGgGaAloD0MIsACmDBxQBcCUhpRSlGgVSzJoFkdApwHNB6a9b3V9lChoBmgJaA9DCBHkoISZtgnAlIaUUpRoFUsyaBZHQKcBkQwsXi11fZQoaAZoCWgPQwhkO99Pjdf8v5SGlFKUaBVLMmgWR0CnAVTvZyuIdX2UKGgGaAloD0MIn1c89UjDB8CUhpRSlGgVSzJoFkdApwEVitq59XV9lChoBmgJaA9DCNTS3AphlQbAlIaUUpRoFUsyaBZHQKcC1gEU0vZ1fZQoaAZoCWgPQwj4wfnUsToUwJSGlFKUaBVLMmgWR0CnApoHs1KodX2UKGgGaAloD0MIKuJ0kq3uAsCUhpRSlGgVSzJoFkdApwJeHYYixHV9lChoBmgJaA9DCDNuaqD5vAjAlIaUUpRoFUsyaBZHQKcCHpvgm7d1fZQoaAZoCWgPQwgkRzoDI+8BwJSGlFKUaBVLMmgWR0CnA9/e1rqMdX2UKGgGaAloD0MIM/ynGyiQDcCUhpRSlGgVSzJoFkdApwOjw+dK/XV9lChoBmgJaA9DCO3yrQ/rzQDAlIaUUpRoFUsyaBZHQKcDZ3cpLEl1fZQoaAZoCWgPQwh1d50N+acRwJSGlFKUaBVLMmgWR0CnAygUL2HtdX2UKGgGaAloD0MIKxcq/1r+CsCUhpRSlGgVSzJoFkdApwVCZ0CA+nV9lChoBmgJaA9DCAmH3uLh/Q3AlIaUUpRoFUsyaBZHQKcFB01ZTyd1fZQoaAZoCWgPQwjmH32TpsEWwJSGlFKUaBVLMmgWR0CnBMvaL4vfdX2UKGgGaAloD0MI38SQnExcBcCUhpRSlGgVSzJoFkdApwSNHpbD/HV9lChoBmgJaA9DCIrkK4GU+AXAlIaUUpRoFUsyaBZHQKcG+3fAKv51fZQoaAZoCWgPQwhXzAhvD6IFwJSGlFKUaBVLMmgWR0CnBsBg3LmqdX2UKGgGaAloD0MIKNcUyOxs/b+UhpRSlGgVSzJoFkdApwaE9nscAHV9lChoBmgJaA9DCPzfERWqSxLAlIaUUpRoFUsyaBZHQKcGRpAUtZp1fZQoaAZoCWgPQwgVrdwLzGoUwJSGlFKUaBVLMmgWR0CnCLDu0CzUdX2UKGgGaAloD0MIbVm+LsMfD8CUhpRSlGgVSzJoFkdApwh1zhgmZ3V9lChoBmgJaA9DCI47pYP1vwzAlIaUUpRoFUsyaBZHQKcIO8V58jR1fZQoaAZoCWgPQwiV1XQ90TUEwJSGlFKUaBVLMmgWR0CnB/052hZhdX2UKGgGaAloD0MIDK65o/+lCsCUhpRSlGgVSzJoFkdApwp4cNpdr3V9lChoBmgJaA9DCKM9XkiHBwbAlIaUUpRoFUsyaBZHQKcKPUNrj5t1fZQoaAZoCWgPQwg33h0Zq+0EwJSGlFKUaBVLMmgWR0CnCgIFFDv3dX2UKGgGaAloD0MI/I7hsZ+VF8CUhpRSlGgVSzJoFkdApwnDh5xBFHV9lChoBmgJaA9DCIRhwJKr2Pq/lIaUUpRoFUsyaBZHQKcMT9kz41x1fZQoaAZoCWgPQwg25J8ZxEcMwJSGlFKUaBVLMmgWR0CnDBTe40/GdX2UKGgGaAloD0MIuOUjKekh97+UhpRSlGgVSzJoFkdApwvZqfvnbXV9lChoBmgJaA9DCHEBaJQuXQjAlIaUUpRoFUsyaBZHQKcLmzt1IRR1fZQoaAZoCWgPQwj27/rMWR/0v5SGlFKUaBVLMmgWR0CnDisir1dxdX2UKGgGaAloD0MIXMmOjUD8BsCUhpRSlGgVSzJoFkdApw3v6InBtXV9lChoBmgJaA9DCKYmwRvS6Pe/lIaUUpRoFUsyaBZHQKcNtITXarZ1fZQoaAZoCWgPQwgoDTUKSUYJwJSGlFKUaBVLMmgWR0CnDXY1gpjMdX2UKGgGaAloD0MIfnGpSltcCcCUhpRSlGgVSzJoFkdApw9a7TUiIXV9lChoBmgJaA9DCF4robskTgnAlIaUUpRoFUsyaBZHQKcPHuAI6bR1fZQoaAZoCWgPQwic3Vomw/EZwJSGlFKUaBVLMmgWR0CnDuKt5le4dX2UKGgGaAloD0MI/HCQEOXLGMCUhpRSlGgVSzJoFkdApw6jSgGr0nV9lChoBmgJaA9DCLzLRXwnJg/AlIaUUpRoFUsyaBZHQKcQaYplSTB1fZQoaAZoCWgPQwg6QDBHjx8BwJSGlFKUaBVLMmgWR0CnEC2ldkaudX2UKGgGaAloD0MIP+JXrOEiC8CUhpRSlGgVSzJoFkdApw/xhH9WIXV9lChoBmgJaA9DCI2chT3tEAjAlIaUUpRoFUsyaBZHQKcPsg0TDfp1fZQoaAZoCWgPQwi+FYkJarj5v5SGlFKUaBVLMmgWR0CnEXWBSUC8dX2UKGgGaAloD0MI6e3PRUNGBsCUhpRSlGgVSzJoFkdApxE5eVs1sXV9lChoBmgJaA9DCEY/Gk6ZOwLAlIaUUpRoFUsyaBZHQKcQ/Q8fV7R1fZQoaAZoCWgPQwhJRzmYTQABwJSGlFKUaBVLMmgWR0CnEL1nM+vAdX2UKGgGaAloD0MI5DCYv0JmCMCUhpRSlGgVSzJoFkdApxJ3vF3pwHV9lChoBmgJaA9DCCkF3V7S6BHAlIaUUpRoFUsyaBZHQKcSO7U5MlF1fZQoaAZoCWgPQwhszVZe8r8CwJSGlFKUaBVLMmgWR0CnEf9q1w5vdX2UKGgGaAloD0MIwHlx4qtNFsCUhpRSlGgVSzJoFkdApxHAKF7D23V9lChoBmgJaA9DCL048dWOAhDAlIaUUpRoFUsyaBZHQKcTkUJOWSl1fZQoaAZoCWgPQwindoapLZUFwJSGlFKUaBVLMmgWR0CnE1VAZ88cdX2UKGgGaAloD0MIM8NGWb8pE8CUhpRSlGgVSzJoFkdApxMZHXmNi3V9lChoBmgJaA9DCNS2YRQED/6/lIaUUpRoFUsyaBZHQKcS2a3I+4d1fZQoaAZoCWgPQwhEp+fdWJD9v5SGlFKUaBVLMmgWR0CnFJvVd5Y6dX2UKGgGaAloD0MI/MVsyaqoCsCUhpRSlGgVSzJoFkdApxRfxc3VC3V9lChoBmgJaA9DCBB1H4DUthjAlIaUUpRoFUsyaBZHQKcUI5FPSD11fZQoaAZoCWgPQwjT3AphNVb9v5SGlFKUaBVLMmgWR0CnE+QnhKlIdX2UKGgGaAloD0MIZrtCHyzjC8CUhpRSlGgVSzJoFkdApxWqNn5BTnV9lChoBmgJaA9DCPH0SlmGWAPAlIaUUpRoFUsyaBZHQKcVbhPTG5t1fZQoaAZoCWgPQwh3TrNAu4MOwJSGlFKUaBVLMmgWR0CnFTHck+otdX2UKGgGaAloD0MIXoHoSZl0BMCUhpRSlGgVSzJoFkdApxTyZ0CA+nV9lChoBmgJaA9DCD0P7s7arQXAlIaUUpRoFUsyaBZHQKcWrMr3Cbd1fZQoaAZoCWgPQwgP1ZRkHc4EwJSGlFKUaBVLMmgWR0CnFnEfLcKxdX2UKGgGaAloD0MI7rQ1IhgHDcCUhpRSlGgVSzJoFkdApxY078vVVnV9lChoBmgJaA9DCA9Dq5MzdAnAlIaUUpRoFUsyaBZHQKcV9XrdFfB1fZQoaAZoCWgPQwg+zjRh+0n/v5SGlFKUaBVLMmgWR0CnF7giFCb+dX2UKGgGaAloD0MIRn2SO2yyE8CUhpRSlGgVSzJoFkdApxd78HfMwHV9lChoBmgJaA9DCKlqgqj7sBDAlIaUUpRoFUsyaBZHQKcXQAmzByl1fZQoaAZoCWgPQwhxj6UPXfAQwJSGlFKUaBVLMmgWR0CnFwCj+JgtdX2UKGgGaAloD0MI+WTFcHUgBMCUhpRSlGgVSzJoFkdApxi7vqkdm3V9lChoBmgJaA9DCNieWRKgpgHAlIaUUpRoFUsyaBZHQKcYf6xgRbt1fZQoaAZoCWgPQwhX6lkQylsTwJSGlFKUaBVLMmgWR0CnGENU4rBkdX2UKGgGaAloD0MIMewwJv09/L+UhpRSlGgVSzJoFkdApxgD2QGOdXV9lChoBmgJaA9DCOJa7WEvNADAlIaUUpRoFUsyaBZHQKcZybjtG/h1fZQoaAZoCWgPQwiWtOIbCp/5v5SGlFKUaBVLMmgWR0CnGY31zySWdX2UKGgGaAloD0MImj474LpiD8CUhpRSlGgVSzJoFkdApxlRx5s0pHV9lChoBmgJaA9DCBYTm49rowjAlIaUUpRoFUsyaBZHQKcZEkrwvxp1fZQoaAZoCWgPQwgxPzc0ZSf9v5SGlFKUaBVLMmgWR0CnGtb1yvLYdX2UKGgGaAloD0MIr83GSswzAcCUhpRSlGgVSzJoFkdApxqbBdld1XV9lChoBmgJaA9DCNoEGJY/nxPAlIaUUpRoFUsyaBZHQKcaXuKoAGV1fZQoaAZoCWgPQwgEyqZc4d0JwJSGlFKUaBVLMmgWR0CnGh+d9UjtdX2UKGgGaAloD0MIvwtbs5VHE8CUhpRSlGgVSzJoFkdApxvfEIgNgHV9lChoBmgJaA9DCHl4z4HlKAPAlIaUUpRoFUsyaBZHQKcbowW3z+Z1fZQoaAZoCWgPQwj68ZcW9Yn7v5SGlFKUaBVLMmgWR0CnG2bPQfITdX2UKGgGaAloD0MIwvaTMT4MD8CUhpRSlGgVSzJoFkdApxsnYjB2wHV9lChoBmgJaA9DCM+Du7N22/6/lIaUUpRoFUsyaBZHQKcc41E3Kjl1fZQoaAZoCWgPQwgo1xTI7BwRwJSGlFKUaBVLMmgWR0CnHKddu5z6dX2UKGgGaAloD0MIL/g0Jy/y/7+UhpRSlGgVSzJoFkdApxxrPfKp1nV9lChoBmgJaA9DCNZXVwVqEQjAlIaUUpRoFUsyaBZHQKccK8s+V1R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (761 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.0377596863545477, "std_reward": 1.3228481813292285, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-25T16:52:23.445949"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6a11f61a174a823713146c902f4424a8d70bdd6793f18b9dfe9524c6be173ee
3
+ size 3056