Danimp94 commited on
Commit
320a2cb
·
1 Parent(s): c35e17d

Upload PPO LunarLander-v2 trained agent

Browse files
PPO-LunarLander-DM.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5ac528cc0347ebde86ef86f497f321a94a5aaf98a26ce53485062b6e7c68247
3
+ size 147198
PPO-LunarLander-DM/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO-LunarLander-DM/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fada4a91040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fada4a910d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fada4a91160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fada4a911f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fada4a91280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fada4a91310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fada4a913a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fada4a91430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fada4a914c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fada4a91550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fada4a915e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fada4a8c4e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673032323316383103,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYuy7wUsIS6gniNOJRfljOAZ4e5Kq6ktwAAgD8AAIA/mkIqPdDWnz+mhHQ+k7ravjRH+zzW2EM9AAAAAAAAAADa9sK9eugmPuLOij6es5O+4IkFPf0bZjkAAAAAAAAAAJpJmT3hirg5wLrTOTT2DrbMYRM7M7T8uAAAgD8AAIA/8xG1Pa4ptLpIx+O6ChQCtqycuLnaJQI6AACAPwAAAABmi808QT+3P2PKHT/2ZUI+oSGNvDzZxrwAAAAAAAAAAAAecz3DOU26HTQYPLEWdjazV046wN1mNQAAgD8AAIA/Zv4ePFwvarpLh907gzpDN3IE9LqUUSU2AACAPwAAgD8m88E9e1aAujoypzteMKY1pBeAOupIw7oAAIA/AACAP61RND6PMis5EFJ3unSyO7ZbF8s7YZWQOQAAgD8AAIA/AEW/PY+GFLoUnhg6yYVJNfw+LLmKbzs0AACAPwAAAAAA6DW89kQZumkIO7aw4tWxZvdiOwpwZzUAAIA/AACAP5qZ87jh8KW6opsEOLsGAjMQlIO6KG4YtwAAgD8AAIA/s/avvcPpb7ow0LU78KIWOOenwLraiGW1AACAPwAAgD+arO48XH9YOZ7sLrhviiky1emJuyWmVTcAAIA/AACAP2ZDEz0UsoW6EJ7IvO3iNrTxGQU7AvOpMwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInaG4400tbUCUhpRSlIwBbJRN+wGMAXSUR0CZjoOGTLW7dX2UKGgGaAloD0MI8MSsF0NkZUCUhpRSlGgVTegDaBZHQJmQtbnoxHp1fZQoaAZoCWgPQwhauKzCZolkQJSGlFKUaBVN6ANoFkdAmZDwP7N0NnV9lChoBmgJaA9DCEksKXcf2WFAlIaUUpRoFU3oA2gWR0CZlJzoUzsQdX2UKGgGaAloD0MIJ77aUZz/SkCUhpRSlGgVS9JoFkdAmZW672+PBHV9lChoBmgJaA9DCBTRr62fc2VAlIaUUpRoFU3oA2gWR0CZlddVNpM6dX2UKGgGaAloD0MIAKsjRzpGZUCUhpRSlGgVTegDaBZHQJmZvovBacJ1fZQoaAZoCWgPQwhJaTaPQ8RkQJSGlFKUaBVN6ANoFkdAmZymzOX3QHV9lChoBmgJaA9DCLq+DweJKmRAlIaUUpRoFU3oA2gWR0CZnPNGmUGFdX2UKGgGaAloD0MIGQKAY89+Q0CUhpRSlGgVS/JoFkdAmZ0By0a6z3V9lChoBmgJaA9DCPZ/DvNlcGBAlIaUUpRoFU3oA2gWR0CZnbkpqh11dX2UKGgGaAloD0MITBsOSwPpZ0CUhpRSlGgVTegDaBZHQJmhcf7rLQp1fZQoaAZoCWgPQwgU6X5OQQdoQJSGlFKUaBVN6ANoFkdAmaSX7YTTOXV9lChoBmgJaA9DCJoF2h1Sh2NAlIaUUpRoFU3oA2gWR0CZs+2pQ1rJdX2UKGgGaAloD0MIxOqPMAyIb0CUhpRSlGgVTbEBaBZHQJm2QiMYMv11fZQoaAZoCWgPQwhupkI8EoZlQJSGlFKUaBVN6ANoFkdAmbf3E61b7nV9lChoBmgJaA9DCMDnhxHC1GRAlIaUUpRoFU3oA2gWR0CZufM3qAz6dX2UKGgGaAloD0MIGGAfnboHY0CUhpRSlGgVTegDaBZHQJnU82sJY1Z1fZQoaAZoCWgPQwj8j0yHzvFiQJSGlFKUaBVN6ANoFkdAmdgElu3tr3V9lChoBmgJaA9DCHkhHR7C4GNAlIaUUpRoFU3oA2gWR0CZ2la0x/NJdX2UKGgGaAloD0MIMswJ2mTkZ0CUhpRSlGgVTegDaBZHQJneKWC2+f11fZQoaAZoCWgPQwipLuBlBgBkQJSGlFKUaBVN6ANoFkdAmd9cg2ZRbnV9lChoBmgJaA9DCFvri4S2W2ZAlIaUUpRoFU3oA2gWR0CZ33okzGgjdX2UKGgGaAloD0MIaFn3jwXkZECUhpRSlGgVTegDaBZHQJnjiom5UcZ1fZQoaAZoCWgPQwiyE16CUxtlQJSGlFKUaBVN6ANoFkdAmeaQVXV9W3V9lChoBmgJaA9DCOVEuwqphGBAlIaUUpRoFU3oA2gWR0CZ5vA8SwnqdX2UKGgGaAloD0MIY2LzcW0cZECUhpRSlGgVTegDaBZHQJnnApTdcjZ1fZQoaAZoCWgPQwjD81KxsUZnQJSGlFKUaBVN6ANoFkdAmeznymQ8wHV9lChoBmgJaA9DCFxV9l0RSEhAlIaUUpRoFUvDaBZHQJnvlcX3xnZ1fZQoaAZoCWgPQwj9wcBzb+BhQJSGlFKUaBVN6ANoFkdAmfEOpCKJmHV9lChoBmgJaA9DCDZ4X5WL1GRAlIaUUpRoFU3oA2gWR0CaAq/47A+IdX2UKGgGaAloD0MIGjBI+jSLZECUhpRSlGgVTegDaBZHQJoE8lNUOut1fZQoaAZoCWgPQwjJ5qp5jkBeQJSGlFKUaBVN6ANoFkdAmgbEMLF4s3V9lChoBmgJaA9DCEPnNXbJJHFAlIaUUpRoFU1+AmgWR0CaB9Ke05U+dX2UKGgGaAloD0MI1ZRkHQ7JZkCUhpRSlGgVTegDaBZHQJoIyuOjqOd1fZQoaAZoCWgPQwgO3IE65aliQJSGlFKUaBVN6ANoFkdAmiQTRIBikXV9lChoBmgJaA9DCDKwjuMH92JAlIaUUpRoFU3oA2gWR0CaJ1+iaiK0dX2UKGgGaAloD0MIW5avy3DHZkCUhpRSlGgVTegDaBZHQJop4sg+yJN1fZQoaAZoCWgPQwi4HRoWo7VxQJSGlFKUaBVNoANoFkdAmis01Muez3V9lChoBmgJaA9DCIS9iSG5eGRAlIaUUpRoFU3oA2gWR0CaLc5u63AmdX2UKGgGaAloD0MIo+pXOh8dZ0CUhpRSlGgVTegDaBZHQJo3K6vq1PZ1fZQoaAZoCWgPQwi8I2O1+WFiQJSGlFKUaBVN6ANoFkdAmjeGRigCfnV9lChoBmgJaA9DCOfIyi8D6WBAlIaUUpRoFU3oA2gWR0CaN5YKYzBRdX2UKGgGaAloD0MI9Z1flCAOYECUhpRSlGgVTegDaBZHQJo8eUTtb9t1fZQoaAZoCWgPQwjvHqD78shhQJSGlFKUaBVN6ANoFkdAmj6MLBsQ/XV9lChoBmgJaA9DCDiez4B6xmdAlIaUUpRoFU3oA2gWR0CaP6Ut7KJVdX2UKGgGaAloD0MIWoEhq1tpRUCUhpRSlGgVS8doFkdAmkF5Hy3CsXV9lChoBmgJaA9DCFddh2pK1jRAlIaUUpRoFUvSaBZHQJpMu7dznzR1fZQoaAZoCWgPQwhszsEzIU1jQJSGlFKUaBVN6ANoFkdAmk1TTSb6QHV9lChoBmgJaA9DCMrErYIYp2VAlIaUUpRoFU3oA2gWR0CaT140dilSdX2UKGgGaAloD0MI5zbhXpm0ZkCUhpRSlGgVTegDaBZHQJpQ3Jq7Acl1fZQoaAZoCWgPQwh3TN2VXaBiQJSGlFKUaBVN6ANoFkdAmlHLTtsvZnV9lChoBmgJaA9DCGiwqfMopGRAlIaUUpRoFU3oA2gWR0CaUqYZEUj+dX2UKGgGaAloD0MIrpy9M1rnYUCUhpRSlGgVTegDaBZHQJptA0GeMAF1fZQoaAZoCWgPQwihMZOoV6dyQJSGlFKUaBVNDgFoFkdAmm25HRTjvXV9lChoBmgJaA9DCLUX0XbMhmFAlIaUUpRoFU3oA2gWR0Cab/rAgxJvdX2UKGgGaAloD0MIDQBV3LjgZECUhpRSlGgVTegDaBZHQJpyUAPuogp1fZQoaAZoCWgPQwj12QHXlQplQJSGlFKUaBVN6ANoFkdAmnOLwjMV13V9lChoBmgJaA9DCAGJJlDEDWJAlIaUUpRoFU3oA2gWR0Cadd3B55Z9dX2UKGgGaAloD0MIYU87/LWCb0CUhpRSlGgVTSwDaBZHQJp8iSOinHh1fZQoaAZoCWgPQwiZEd4eBDVlQJSGlFKUaBVN6ANoFkdAmn4qLwWnCXV9lChoBmgJaA9DCPWB5J3D42BAlIaUUpRoFU3oA2gWR0CafjgDRtxddX2UKGgGaAloD0MI9YO6SKHuT0CUhpRSlGgVS9FoFkdAmoBbPD50sHV9lChoBmgJaA9DCEhPkUPE12hAlIaUUpRoFU3oA2gWR0Cags46Oo5xdX2UKGgGaAloD0MIBaOSOgH+ZkCUhpRSlGgVTegDaBZHQJqEwvtdAxB1fZQoaAZoCWgPQwioAYOkjx5xQJSGlFKUaBVNWQFoFkdAmpBmlMyrP3V9lChoBmgJaA9DCGE2AYZlT2NAlIaUUpRoFU3oA2gWR0CalIJ3gUDddX2UKGgGaAloD0MIYhHDDuOAZECUhpRSlGgVTegDaBZHQJqWtQemvW91fZQoaAZoCWgPQwjp1JXPclFkQJSGlFKUaBVN6ANoFkdAmphTcIqsl3V9lChoBmgJaA9DCH16bMuAHl5AlIaUUpRoFU3oA2gWR0CamUAI6bONdX2UKGgGaAloD0MI2VpfJDSSa0CUhpRSlGgVTZsBaBZHQJqZtiXpnpV1fZQoaAZoCWgPQwgMAiuHlr1iQJSGlFKUaBVN6ANoFkdAmpolI7Njb3V9lChoBmgJaA9DCPjEOlW+9VFAlIaUUpRoFUvYaBZHQJqcNoakyk91fZQoaAZoCWgPQwhMxca8DsBkQJSGlFKUaBVN6ANoFkdAmrPRqKxcFHV9lChoBmgJaA9DCGIUBI9vVmJAlIaUUpRoFU3oA2gWR0CatG9Ujs2OdX2UKGgGaAloD0MIqaENwAZgR0CUhpRSlGgVS8ZoFkdAmrVlj7Q9inV9lChoBmgJaA9DCJKumXyzPTNAlIaUUpRoFUu8aBZHQJq1wysS00F1fZQoaAZoCWgPQwjBGmfTERBMQJSGlFKUaBVL8GgWR0Cato3W4EwGdX2UKGgGaAloD0MIrvGZ7J+/Z0CUhpRSlGgVTegDaBZHQJq2kImgJ1J1fZQoaAZoCWgPQwjVCP1MvcNRQJSGlFKUaBVLvWgWR0Cat/uf29L6dX2UKGgGaAloD0MIs/D1tS7AY0CUhpRSlGgVTegDaBZHQJq4eMxXXAd1fZQoaAZoCWgPQwh+5UF6CllmQJSGlFKUaBVN6ANoFkdAmrlvukUKzHV9lChoBmgJaA9DCD1/2qgOPHBAlIaUUpRoFU0lA2gWR0Cau/LAYYR/dX2UKGgGaAloD0MIsVJBRdXhRkCUhpRSlGgVS+BoFkdAmr4Nd/rjYXV9lChoBmgJaA9DCJQVw9WB9GFAlIaUUpRoFU3oA2gWR0CawYRTS9dvdX2UKGgGaAloD0MIoUrNHmhyYECUhpRSlGgVTegDaBZHQJrDTfP5YYB1fZQoaAZoCWgPQwhuhbAaSzg0QJSGlFKUaBVL12gWR0Caw3oRZlnRdX2UKGgGaAloD0MI/Pz34LWdSkCUhpRSlGgVS9doFkdAmsnzjJdSl3V9lChoBmgJaA9DCJ/ouvADYWdAlIaUUpRoFU3oA2gWR0Cay1AN5MURdX2UKGgGaAloD0MI5+Jve8IQckCUhpRSlGgVTb8BaBZHQJrNLHYHxBp1fZQoaAZoCWgPQwjD0ytlmcVuQJSGlFKUaBVNzwFoFkdAmtAOt8uzyHV9lChoBmgJaA9DCFH0wMcgeHBAlIaUUpRoFU0lA2gWR0Ca1YqRU3n7dX2UKGgGaAloD0MIuOhkqfUeLECUhpRSlGgVS9doFkdAmtfhUR3/xXV9lChoBmgJaA9DCHQLXYnAt29AlIaUUpRoFU2LAWgWR0Ca2K2A5JbudX2UKGgGaAloD0MIAvIlVPCUa0CUhpRSlGgVTbQCaBZHQJrad1FH8TB1fZQoaAZoCWgPQwjbwB2o065hQJSGlFKUaBVN6ANoFkdAmtuF98Z1m3V9lChoBmgJaA9DCFjKMsQx5GJAlIaUUpRoFU3oA2gWR0Ca3WnIQvpRdX2UKGgGaAloD0MIA+s4fqjoNECUhpRSlGgVS8FoFkdAmuCgk9lmOHV9lChoBmgJaA9DCKcC7nn+HC9AlIaUUpRoFUvIaBZHQJrotIBikO91fZQoaAZoCWgPQwi6SQwCK/BkQJSGlFKUaBVN6ANoFkdAmuldlNDc/XVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 256,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-DM/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2598e10469ab35bda7928baa73f9c63263cdb7f3aa7d4abc8f694619d901d2ec
3
+ size 87929
PPO-LunarLander-DM/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3661e1520eb9466079f751e6519226ac76fb13c5893de75dc2533672a8d0d36e
3
+ size 43201
PPO-LunarLander-DM/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-DM/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.09 +/- 14.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fada4a91040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fada4a910d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fada4a91160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fada4a911f0>", "_build": "<function ActorCriticPolicy._build at 0x7fada4a91280>", "forward": "<function ActorCriticPolicy.forward at 0x7fada4a91310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fada4a913a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fada4a91430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fada4a914c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fada4a91550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fada4a915e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fada4a8c4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673032323316383103, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYuy7wUsIS6gniNOJRfljOAZ4e5Kq6ktwAAgD8AAIA/mkIqPdDWnz+mhHQ+k7ravjRH+zzW2EM9AAAAAAAAAADa9sK9eugmPuLOij6es5O+4IkFPf0bZjkAAAAAAAAAAJpJmT3hirg5wLrTOTT2DrbMYRM7M7T8uAAAgD8AAIA/8xG1Pa4ptLpIx+O6ChQCtqycuLnaJQI6AACAPwAAAABmi808QT+3P2PKHT/2ZUI+oSGNvDzZxrwAAAAAAAAAAAAecz3DOU26HTQYPLEWdjazV046wN1mNQAAgD8AAIA/Zv4ePFwvarpLh907gzpDN3IE9LqUUSU2AACAPwAAgD8m88E9e1aAujoypzteMKY1pBeAOupIw7oAAIA/AACAP61RND6PMis5EFJ3unSyO7ZbF8s7YZWQOQAAgD8AAIA/AEW/PY+GFLoUnhg6yYVJNfw+LLmKbzs0AACAPwAAAAAA6DW89kQZumkIO7aw4tWxZvdiOwpwZzUAAIA/AACAP5qZ87jh8KW6opsEOLsGAjMQlIO6KG4YtwAAgD8AAIA/s/avvcPpb7ow0LU78KIWOOenwLraiGW1AACAPwAAgD+arO48XH9YOZ7sLrhviiky1emJuyWmVTcAAIA/AACAP2ZDEz0UsoW6EJ7IvO3iNrTxGQU7AvOpMwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInaG4400tbUCUhpRSlIwBbJRN+wGMAXSUR0CZjoOGTLW7dX2UKGgGaAloD0MI8MSsF0NkZUCUhpRSlGgVTegDaBZHQJmQtbnoxHp1fZQoaAZoCWgPQwhauKzCZolkQJSGlFKUaBVN6ANoFkdAmZDwP7N0NnV9lChoBmgJaA9DCEksKXcf2WFAlIaUUpRoFU3oA2gWR0CZlJzoUzsQdX2UKGgGaAloD0MIJ77aUZz/SkCUhpRSlGgVS9JoFkdAmZW672+PBHV9lChoBmgJaA9DCBTRr62fc2VAlIaUUpRoFU3oA2gWR0CZlddVNpM6dX2UKGgGaAloD0MIAKsjRzpGZUCUhpRSlGgVTegDaBZHQJmZvovBacJ1fZQoaAZoCWgPQwhJaTaPQ8RkQJSGlFKUaBVN6ANoFkdAmZymzOX3QHV9lChoBmgJaA9DCLq+DweJKmRAlIaUUpRoFU3oA2gWR0CZnPNGmUGFdX2UKGgGaAloD0MIGQKAY89+Q0CUhpRSlGgVS/JoFkdAmZ0By0a6z3V9lChoBmgJaA9DCPZ/DvNlcGBAlIaUUpRoFU3oA2gWR0CZnbkpqh11dX2UKGgGaAloD0MITBsOSwPpZ0CUhpRSlGgVTegDaBZHQJmhcf7rLQp1fZQoaAZoCWgPQwgU6X5OQQdoQJSGlFKUaBVN6ANoFkdAmaSX7YTTOXV9lChoBmgJaA9DCJoF2h1Sh2NAlIaUUpRoFU3oA2gWR0CZs+2pQ1rJdX2UKGgGaAloD0MIxOqPMAyIb0CUhpRSlGgVTbEBaBZHQJm2QiMYMv11fZQoaAZoCWgPQwhupkI8EoZlQJSGlFKUaBVN6ANoFkdAmbf3E61b7nV9lChoBmgJaA9DCMDnhxHC1GRAlIaUUpRoFU3oA2gWR0CZufM3qAz6dX2UKGgGaAloD0MIGGAfnboHY0CUhpRSlGgVTegDaBZHQJnU82sJY1Z1fZQoaAZoCWgPQwj8j0yHzvFiQJSGlFKUaBVN6ANoFkdAmdgElu3tr3V9lChoBmgJaA9DCHkhHR7C4GNAlIaUUpRoFU3oA2gWR0CZ2la0x/NJdX2UKGgGaAloD0MIMswJ2mTkZ0CUhpRSlGgVTegDaBZHQJneKWC2+f11fZQoaAZoCWgPQwipLuBlBgBkQJSGlFKUaBVN6ANoFkdAmd9cg2ZRbnV9lChoBmgJaA9DCFvri4S2W2ZAlIaUUpRoFU3oA2gWR0CZ33okzGgjdX2UKGgGaAloD0MIaFn3jwXkZECUhpRSlGgVTegDaBZHQJnjiom5UcZ1fZQoaAZoCWgPQwiyE16CUxtlQJSGlFKUaBVN6ANoFkdAmeaQVXV9W3V9lChoBmgJaA9DCOVEuwqphGBAlIaUUpRoFU3oA2gWR0CZ5vA8SwnqdX2UKGgGaAloD0MIY2LzcW0cZECUhpRSlGgVTegDaBZHQJnnApTdcjZ1fZQoaAZoCWgPQwjD81KxsUZnQJSGlFKUaBVN6ANoFkdAmeznymQ8wHV9lChoBmgJaA9DCFxV9l0RSEhAlIaUUpRoFUvDaBZHQJnvlcX3xnZ1fZQoaAZoCWgPQwj9wcBzb+BhQJSGlFKUaBVN6ANoFkdAmfEOpCKJmHV9lChoBmgJaA9DCDZ4X5WL1GRAlIaUUpRoFU3oA2gWR0CaAq/47A+IdX2UKGgGaAloD0MIGjBI+jSLZECUhpRSlGgVTegDaBZHQJoE8lNUOut1fZQoaAZoCWgPQwjJ5qp5jkBeQJSGlFKUaBVN6ANoFkdAmgbEMLF4s3V9lChoBmgJaA9DCEPnNXbJJHFAlIaUUpRoFU1+AmgWR0CaB9Ke05U+dX2UKGgGaAloD0MI1ZRkHQ7JZkCUhpRSlGgVTegDaBZHQJoIyuOjqOd1fZQoaAZoCWgPQwgO3IE65aliQJSGlFKUaBVN6ANoFkdAmiQTRIBikXV9lChoBmgJaA9DCDKwjuMH92JAlIaUUpRoFU3oA2gWR0CaJ1+iaiK0dX2UKGgGaAloD0MIW5avy3DHZkCUhpRSlGgVTegDaBZHQJop4sg+yJN1fZQoaAZoCWgPQwi4HRoWo7VxQJSGlFKUaBVNoANoFkdAmis01Muez3V9lChoBmgJaA9DCIS9iSG5eGRAlIaUUpRoFU3oA2gWR0CaLc5u63AmdX2UKGgGaAloD0MIo+pXOh8dZ0CUhpRSlGgVTegDaBZHQJo3K6vq1PZ1fZQoaAZoCWgPQwi8I2O1+WFiQJSGlFKUaBVN6ANoFkdAmjeGRigCfnV9lChoBmgJaA9DCOfIyi8D6WBAlIaUUpRoFU3oA2gWR0CaN5YKYzBRdX2UKGgGaAloD0MI9Z1flCAOYECUhpRSlGgVTegDaBZHQJo8eUTtb9t1fZQoaAZoCWgPQwjvHqD78shhQJSGlFKUaBVN6ANoFkdAmj6MLBsQ/XV9lChoBmgJaA9DCDiez4B6xmdAlIaUUpRoFU3oA2gWR0CaP6Ut7KJVdX2UKGgGaAloD0MIWoEhq1tpRUCUhpRSlGgVS8doFkdAmkF5Hy3CsXV9lChoBmgJaA9DCFddh2pK1jRAlIaUUpRoFUvSaBZHQJpMu7dznzR1fZQoaAZoCWgPQwhszsEzIU1jQJSGlFKUaBVN6ANoFkdAmk1TTSb6QHV9lChoBmgJaA9DCMrErYIYp2VAlIaUUpRoFU3oA2gWR0CaT140dilSdX2UKGgGaAloD0MI5zbhXpm0ZkCUhpRSlGgVTegDaBZHQJpQ3Jq7Acl1fZQoaAZoCWgPQwh3TN2VXaBiQJSGlFKUaBVN6ANoFkdAmlHLTtsvZnV9lChoBmgJaA9DCGiwqfMopGRAlIaUUpRoFU3oA2gWR0CaUqYZEUj+dX2UKGgGaAloD0MIrpy9M1rnYUCUhpRSlGgVTegDaBZHQJptA0GeMAF1fZQoaAZoCWgPQwihMZOoV6dyQJSGlFKUaBVNDgFoFkdAmm25HRTjvXV9lChoBmgJaA9DCLUX0XbMhmFAlIaUUpRoFU3oA2gWR0Cab/rAgxJvdX2UKGgGaAloD0MIDQBV3LjgZECUhpRSlGgVTegDaBZHQJpyUAPuogp1fZQoaAZoCWgPQwj12QHXlQplQJSGlFKUaBVN6ANoFkdAmnOLwjMV13V9lChoBmgJaA9DCAGJJlDEDWJAlIaUUpRoFU3oA2gWR0Cadd3B55Z9dX2UKGgGaAloD0MIYU87/LWCb0CUhpRSlGgVTSwDaBZHQJp8iSOinHh1fZQoaAZoCWgPQwiZEd4eBDVlQJSGlFKUaBVN6ANoFkdAmn4qLwWnCXV9lChoBmgJaA9DCPWB5J3D42BAlIaUUpRoFU3oA2gWR0CafjgDRtxddX2UKGgGaAloD0MI9YO6SKHuT0CUhpRSlGgVS9FoFkdAmoBbPD50sHV9lChoBmgJaA9DCEhPkUPE12hAlIaUUpRoFU3oA2gWR0Cags46Oo5xdX2UKGgGaAloD0MIBaOSOgH+ZkCUhpRSlGgVTegDaBZHQJqEwvtdAxB1fZQoaAZoCWgPQwioAYOkjx5xQJSGlFKUaBVNWQFoFkdAmpBmlMyrP3V9lChoBmgJaA9DCGE2AYZlT2NAlIaUUpRoFU3oA2gWR0CalIJ3gUDddX2UKGgGaAloD0MIYhHDDuOAZECUhpRSlGgVTegDaBZHQJqWtQemvW91fZQoaAZoCWgPQwjp1JXPclFkQJSGlFKUaBVN6ANoFkdAmphTcIqsl3V9lChoBmgJaA9DCH16bMuAHl5AlIaUUpRoFU3oA2gWR0CamUAI6bONdX2UKGgGaAloD0MI2VpfJDSSa0CUhpRSlGgVTZsBaBZHQJqZtiXpnpV1fZQoaAZoCWgPQwgMAiuHlr1iQJSGlFKUaBVN6ANoFkdAmpolI7Njb3V9lChoBmgJaA9DCPjEOlW+9VFAlIaUUpRoFUvYaBZHQJqcNoakyk91fZQoaAZoCWgPQwhMxca8DsBkQJSGlFKUaBVN6ANoFkdAmrPRqKxcFHV9lChoBmgJaA9DCGIUBI9vVmJAlIaUUpRoFU3oA2gWR0CatG9Ujs2OdX2UKGgGaAloD0MIqaENwAZgR0CUhpRSlGgVS8ZoFkdAmrVlj7Q9inV9lChoBmgJaA9DCJKumXyzPTNAlIaUUpRoFUu8aBZHQJq1wysS00F1fZQoaAZoCWgPQwjBGmfTERBMQJSGlFKUaBVL8GgWR0Cato3W4EwGdX2UKGgGaAloD0MIrvGZ7J+/Z0CUhpRSlGgVTegDaBZHQJq2kImgJ1J1fZQoaAZoCWgPQwjVCP1MvcNRQJSGlFKUaBVLvWgWR0Cat/uf29L6dX2UKGgGaAloD0MIs/D1tS7AY0CUhpRSlGgVTegDaBZHQJq4eMxXXAd1fZQoaAZoCWgPQwh+5UF6CllmQJSGlFKUaBVN6ANoFkdAmrlvukUKzHV9lChoBmgJaA9DCD1/2qgOPHBAlIaUUpRoFU0lA2gWR0Cau/LAYYR/dX2UKGgGaAloD0MIsVJBRdXhRkCUhpRSlGgVS+BoFkdAmr4Nd/rjYXV9lChoBmgJaA9DCJQVw9WB9GFAlIaUUpRoFU3oA2gWR0CawYRTS9dvdX2UKGgGaAloD0MIoUrNHmhyYECUhpRSlGgVTegDaBZHQJrDTfP5YYB1fZQoaAZoCWgPQwhuhbAaSzg0QJSGlFKUaBVL12gWR0Caw3oRZlnRdX2UKGgGaAloD0MI/Pz34LWdSkCUhpRSlGgVS9doFkdAmsnzjJdSl3V9lChoBmgJaA9DCJ/ouvADYWdAlIaUUpRoFU3oA2gWR0Cay1AN5MURdX2UKGgGaAloD0MI5+Jve8IQckCUhpRSlGgVTb8BaBZHQJrNLHYHxBp1fZQoaAZoCWgPQwjD0ytlmcVuQJSGlFKUaBVNzwFoFkdAmtAOt8uzyHV9lChoBmgJaA9DCFH0wMcgeHBAlIaUUpRoFU0lA2gWR0Ca1YqRU3n7dX2UKGgGaAloD0MIuOhkqfUeLECUhpRSlGgVS9doFkdAmtfhUR3/xXV9lChoBmgJaA9DCHQLXYnAt29AlIaUUpRoFU2LAWgWR0Ca2K2A5JbudX2UKGgGaAloD0MIAvIlVPCUa0CUhpRSlGgVTbQCaBZHQJrad1FH8TB1fZQoaAZoCWgPQwjbwB2o065hQJSGlFKUaBVN6ANoFkdAmtuF98Z1m3V9lChoBmgJaA9DCFjKMsQx5GJAlIaUUpRoFU3oA2gWR0Ca3WnIQvpRdX2UKGgGaAloD0MIA+s4fqjoNECUhpRSlGgVS8FoFkdAmuCgk9lmOHV9lChoBmgJaA9DCKcC7nn+HC9AlIaUUpRoFUvIaBZHQJrotIBikO91fZQoaAZoCWgPQwi6SQwCK/BkQJSGlFKUaBVN6ANoFkdAmuldlNDc/XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.09038077863744, "std_reward": 14.864913320954358, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T19:48:03.561677"}