Daniyal commited on
Commit
9cb367c
·
1 Parent(s): f263469

Upload PPO LunarLander-v2 trained agent

Browse files
AxlDM-ppo-LunarLander-v2-Try2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad3f562ecf046512d33d1c1d66cb5750d8a97a689bb8269c7cea1e62ec036b64
3
- size 146954
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b18ab5ea7a4ff0dcde6d51da388e45a86d202820fa0fc744aee57c5f0ee0fec
3
+ size 146970
AxlDM-ppo-LunarLander-v2-Try2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x0000019C7A289D30>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000019C7A289DC0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000019C7A289E50>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000019C7A289EE0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x0000019C7A289F70>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x0000019C7A290040>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000019C7A2900D0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x0000019C7A290160>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000019C7A2901F0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000019C7A290280>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000019C7A290310>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x0000019C7A28D120>"
20
  },
21
  "verbose": 0,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1673155286149352600,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAVBhr6h1jY/b/iivoH4Kb8PF5G+b0CgvQAAAAAAAAAAAMBpu4fEIT7n94s7RruGvgnRfjyWDqy8AAAAAAAAAABm9wM9w8kjujhJLbdX1gGyU4nUuu7GTjYAAIA/AACAP03jnT0ckxm8ogUvvYEm7Lw4SlM9VMg6PgAAgD8AAIA/HSBcvtrrD72f/SC8AhrMupqeeD4CrJk7AACAPwAAgD+ta1i+rgDsvPW3tbvfSD+6RZNOPsP3EzsAAIA/AACAPwAg6TyFS425XMA4M3MsIDCo/247XufEswAAgD8AAIA/7fM6vt8ibD8XnIW+GSJRvzHVIr4GvZq9AAAAAAAAAABNhXU9KXv2PvdYxrw+NA2/lgS+OaMQJrwAAAAAAAAAAN1DWb4UsbC8qGj9upvFTrmaRhs+DBcgOgAAgD8AAIA/ACi8vPE7tT+RHEO/4gFDPTk9rDwc3sU9AAAAAAAAAACj5Ya+H0rSPM+GEztWFLe5lDJqvi0UTboAAIA/AACAPwDtjj3tA6M/veMlPwLdOr8u3Rc8lgFcPgAAAAAAAAAAZmbGOWnwB7wuI9O88Vt1PQMVYD32Frq8AACAPwAAgD8a3PK94WL1Oaj4ez7CGgG9thhrvGbm5D0AAIA/AACAPzP5cb0KuzG7aHXPPGSW+L3lz4w8Ir41PwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,7 +69,7 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJV0z+WZMcUCUhpRSlIwBbJRLyYwBdJRHQJNa+26TW5J1fZQoaAZoCWgPQwikG2FREQxxQJSGlFKUaBVLx2gWR0CTWwKZUkv9dX2UKGgGaAloD0MIm5DWGLS3cUCUhpRSlGgVS8ZoFkdAk1swrlNlAnV9lChoBmgJaA9DCMDtCRJbTnJAlIaUUpRoFUu1aBZHQJNbTmCAc1h1fZQoaAZoCWgPQwinlUIgF89uQJSGlFKUaBVLv2gWR0CTW505EMLGdX2UKGgGaAloD0MIqoB7nj8EckCUhpRSlGgVS/ZoFkdAk1xqBqbjLnV9lChoBmgJaA9DCLNEZ5lFwHBAlIaUUpRoFUvDaBZHQJNcfoC+10F1fZQoaAZoCWgPQwjKbfse9b1HQJSGlFKUaBVLlGgWR0CTXInEVFhHdX2UKGgGaAloD0MIVHQkl3/jcUCUhpRSlGgVS9xoFkdAk10M10knkXV9lChoBmgJaA9DCIv/O6JC7nJAlIaUUpRoFUvnaBZHQJNdOuuA7Pp1fZQoaAZoCWgPQwgZxXJL681xQJSGlFKUaBVLuGgWR0CTXbje9Ba+dX2UKGgGaAloD0MI+tNGdbqscUCUhpRSlGgVS8FoFkdAk16L0J4SpXV9lChoBmgJaA9DCIjaNowCfXJAlIaUUpRoFUvCaBZHQJNeolfJFLF1fZQoaAZoCWgPQwippbkVwlxxQJSGlFKUaBVLzGgWR0CTXs9mHxjKdX2UKGgGaAloD0MI+7K0UzMtcUCUhpRSlGgVS89oFkdAk18ZIUahpXV9lChoBmgJaA9DCO0pOSc2D3JAlIaUUpRoFUvoaBZHQJNfOeVcD8t1fZQoaAZoCWgPQwhfevtz0T5xQJSGlFKUaBVL5GgWR0CTXznmaH9FdX2UKGgGaAloD0MIZ2X7kLdxUECUhpRSlGgVS5xoFkdAk19xMajveHV9lChoBmgJaA9DCPVnP1KE9XFAlIaUUpRoFUvjaBZHQJNf8jcEeQx1fZQoaAZoCWgPQwgXnSy1nu5xQJSGlFKUaBVL/mgWR0CTYB4/u9eydX2UKGgGaAloD0MI/cHAc+/GcECUhpRSlGgVS8RoFkdAk2BQbEP1+XV9lChoBmgJaA9DCB7AIr9+RnBAlIaUUpRoFUvJaBZHQJNgX8hs67x1fZQoaAZoCWgPQwgmVHB4ARdwQJSGlFKUaBVLvGgWR0CTYKmEGqxUdX2UKGgGaAloD0MIlBYuq7DCb0CUhpRSlGgVS6doFkdAk2Hi2tuDSXV9lChoBmgJaA9DCFgczvzqPHFAlIaUUpRoFUuwaBZHQJNh/HR1HON1fZQoaAZoCWgPQwjg2omSkGxyQJSGlFKUaBVL+WgWR0CTYqJXyRSxdX2UKGgGaAloD0MIhPBo48jicUCUhpRSlGgVS8BoFkdAk2Ln+l0o0HV9lChoBmgJaA9DCKfJjLeVlnBAlIaUUpRoFUu5aBZHQJNjIljVhCt1fZQoaAZoCWgPQwgK9fQRePNxQJSGlFKUaBVLymgWR0CTYzz4UN8WdX2UKGgGaAloD0MILLr1mp7QcUCUhpRSlGgVS+VoFkdAk2Nctf5ULnV9lChoBmgJaA9DCLHCLR+J/XBAlIaUUpRoFUvhaBZHQJNjsroW56N1fZQoaAZoCWgPQwjmWx/WWztxQJSGlFKUaBVLx2gWR0CTZCBMBZIQdX2UKGgGaAloD0MIroIY6BqScUCUhpRSlGgVS9RoFkdAk2Q1zMibD3V9lChoBmgJaA9DCLK7QElBbHFAlIaUUpRoFUvlaBZHQJNlCL4vexh1fZQoaAZoCWgPQwgRbjKqDAFxQJSGlFKUaBVLoGgWR0CTZTCuEEkjdX2UKGgGaAloD0MIbcZpiCq3cECUhpRSlGgVS+FoFkdAk2VEIw/PgXV9lChoBmgJaA9DCCHlJ9U+pnJAlIaUUpRoFUv7aBZHQJNlagXdj5N1fZQoaAZoCWgPQwjwp8ZLt7xwQJSGlFKUaBVLqWgWR0CTZXRDTjNqdX2UKGgGaAloD0MIsTGvI85JcECUhpRSlGgVS7NoFkdAk2a32ZiNKnV9lChoBmgJaA9DCD/9Z83PSnFAlIaUUpRoFUu5aBZHQJNm8jfNzKd1fZQoaAZoCWgPQwjQ1OsWAYduQJSGlFKUaBVLv2gWR0CTZzK6WgOCdX2UKGgGaAloD0MI8djPYqkGckCUhpRSlGgVS9xoFkdAk2dXl8w6AHV9lChoBmgJaA9DCPFJJxLMvm9AlIaUUpRoFUugaBZHQJNncTDfm9x1fZQoaAZoCWgPQwhF8pVAylpvQJSGlFKUaBVLyGgWR0CTZ7je9Ba+dX2UKGgGaAloD0MIuf5dn7nVcUCUhpRSlGgVTQ4BaBZHQJNoFxQzk6t1fZQoaAZoCWgPQwhblq/L8P1wQJSGlFKUaBVLs2gWR0CTaQ7jDKoydX2UKGgGaAloD0MItK1mnXHYcECUhpRSlGgVS8doFkdAk2kVB+nZTXV9lChoBmgJaA9DCBeBsb4BHHFAlIaUUpRoFUv2aBZHQJNpKYNRWLh1fZQoaAZoCWgPQwiDUN7HkTpxQJSGlFKUaBVLzWgWR0CTaWsMiKR/dX2UKGgGaAloD0MIfVwbKoYIc0CUhpRSlGgVS9loFkdAk2mWDg62fHV9lChoBmgJaA9DCHr9SXyuSHFAlIaUUpRoFUvaaBZHQJNp38iwB5p1fZQoaAZoCWgPQwhLrmLxm3JnQJSGlFKUaBVN6ANoFkdAk2o1zhgmZ3V9lChoBmgJaA9DCKD6B5EM+HBAlIaUUpRoFUu8aBZHQJNrKYNRWLh1fZQoaAZoCWgPQwgg8SvWcJZyQJSGlFKUaBVLyGgWR0CTa0UornTzdX2UKGgGaAloD0MIpfYi2g7IbkCUhpRSlGgVS8BoFkdAk2taqbSZ0HV9lChoBmgJaA9DCFkWTPyRoXBAlIaUUpRoFUvqaBZHQJNrfHU+cH51fZQoaAZoCWgPQwhJvhJIiW1vQJSGlFKUaBVLw2gWR0CTa66hQFcIdX2UKGgGaAloD0MIwXPv4VIRdECUhpRSlGgVS+1oFkdAk2vBEORT0nV9lChoBmgJaA9DCLtE9dbAOXFAlIaUUpRoFUvHaBZHQJNsFg4Otnx1fZQoaAZoCWgPQwj8brplx3pxQJSGlFKUaBVLrGgWR0CTbPZP2wmmdX2UKGgGaAloD0MI3IE65dHIbkCUhpRSlGgVS8hoFkdAk21dvKlpGnV9lChoBmgJaA9DCEbsE0DxqHBAlIaUUpRoFUvdaBZHQJNtcTDfm9x1fZQoaAZoCWgPQwiSIjKsIrdwQJSGlFKUaBVL4WgWR0CTbYGTLW7OdX2UKGgGaAloD0MIvLA1Wzl0cECUhpRSlGgVS+ZoFkdAk22yuuA7P3V9lChoBmgJaA9DCN+/eXHipW9AlIaUUpRoFUvCaBZHQJNuBayKNyZ1fZQoaAZoCWgPQwjGT+Pe/I9iQJSGlFKUaBVN6ANoFkdAk24eP/7zkXV9lChoBmgJaA9DCIM1zqaj53BAlIaUUpRoFUvJaBZHQJNvNcyFfzB1fZQoaAZoCWgPQwirWz0nPbdvQJSGlFKUaBVLxWgWR0CTb1mkWRA9dX2UKGgGaAloD0MIM1TFVHr2cECUhpRSlGgVS9FoFkdAk291SXMQmXV9lChoBmgJaA9DCEIIyJfQ/XBAlIaUUpRoFUvKaBZHQJNwHj81n/V1fZQoaAZoCWgPQwgg1EUK5UtzQJSGlFKUaBVL8mgWR0CTcH6BRQ7+dX2UKGgGaAloD0MIF2U2yCROcUCUhpRSlGgVS6ZoFkdAk3DYna37UHV9lChoBmgJaA9DCJxqLcwCp3BAlIaUUpRoFUuyaBZHQJNxKojv/ip1fZQoaAZoCWgPQwgdW88QDsdmQJSGlFKUaBVN6ANoFkdAk3FMU/OdG3V9lChoBmgJaA9DCNl22hpR8nFAlIaUUpRoFUvqaBZHQJNxyUFB6a91fZQoaAZoCWgPQwgWTWcng5lwQJSGlFKUaBVLumgWR0CTceb0OEuhdX2UKGgGaAloD0MIfv/mxYnacECUhpRSlGgVS81oFkdAk3HzPa+N+HV9lChoBmgJaA9DCKNAn8jTtnJAlIaUUpRoFUvhaBZHQJNyApnYg7p1fZQoaAZoCWgPQwj/PA0YZFpwQJSGlFKUaBVL7GgWR0CTcwi++M6zdX2UKGgGaAloD0MIYeKPog74cECUhpRSlGgVTWsBaBZHQJNzKH31zyV1fZQoaAZoCWgPQwgleEMaVVZxQJSGlFKUaBVLuWgWR0CTc0MdcSoPdX2UKGgGaAloD0MIUOPe/EZzcUCUhpRSlGgVTfABaBZHQJNz6wwCbMJ1fZQoaAZoCWgPQwiDoQ4r3ClzQJSGlFKUaBVL6GgWR0CTdBH1e0HAdX2UKGgGaAloD0MIdSDrqVW5cUCUhpRSlGgVS75oFkdAk3QeP3i71HV9lChoBmgJaA9DCKJhMeraI3BAlIaUUpRoFUutaBZHQJN0IlfJFLF1fZQoaAZoCWgPQwiU+UffpC1wQJSGlFKUaBVLuGgWR0CTdRYOUdJbdX2UKGgGaAloD0MICvZf5yarcUCUhpRSlGgVS9VoFkdAk3WQ71ZkkXV9lChoBmgJaA9DCJzDtdpDU29AlIaUUpRoFUu2aBZHQJN1sbR4QjF1fZQoaAZoCWgPQwiwjuOHSiFxQJSGlFKUaBVL02gWR0CTdiqI7/4qdX2UKGgGaAloD0MIuYlamtsVcECUhpRSlGgVS99oFkdAk3aO49X9znV9lChoBmgJaA9DCI1jJHvENXJAlIaUUpRoFUu6aBZHQJN29lDneSB1fZQoaAZoCWgPQwjtSPWdH1RwQJSGlFKUaBVLsGgWR0CTdvtvXK8tdX2UKGgGaAloD0MILJs5JLVWR0CUhpRSlGgVS5loFkdAk3daqfe1r3V9lChoBmgJaA9DCE/JObHHo3BAlIaUUpRoFUvjaBZHQJN3+28Zk091fZQoaAZoCWgPQwiztFNzeWdzQJSGlFKUaBVLuGgWR0CTeBL74zrNdX2UKGgGaAloD0MI+5XOh2d0cUCUhpRSlGgVS+BoFkdAk3j+gQHzH3V9lChoBmgJaA9DCNS7eD9uXHJAlIaUUpRoFUv2aBZHQJN5Ri8WbgF1fZQoaAZoCWgPQwhEatrFtONvQJSGlFKUaBVLxmgWR0CTeXVJtix3dX2UKGgGaAloD0MIwhIPKBsZb0CUhpRSlGgVS65oFkdAk3pvJV81GnV9lChoBmgJaA9DCCTRyyhWYnFAlIaUUpRoFUvcaBZHQJN6mSEDhcZ1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x000002AD702E8040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002AD702E80D0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002AD702E8160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002AD702E81F0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x000002AD702E8280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x000002AD702E8310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002AD702E83A0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x000002AD702E8430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002AD702E84C0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002AD702E8550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002AD702E85E0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x000002AD702E18A0>"
20
  },
21
  "verbose": 0,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1673158217400907500,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCbZz7MsIQ/JvtaPvCxwL6N9Pk+hloQPgAAAAAAAAAAgM4Ivez0QD8XoCa8dfDwvlDn87tycRi8AAAAAAAAAADAex2+xD+/PpINgj4Jl7O+GNbpPHuBjz0AAAAAAAAAADNKAr4KIiW7+5mHvExPijze6dI6CpBuPQAAgD8AAIA/QJLePT5NpT4tDRm8LNudvijzujyLia+8AAAAAAAAAADT+02+TwEHP5kvEz5l8dq+ai5wvUKN9D0AAAAAAAAAAM3X8LwAaaQ/xEHLveSWFL/Gz3C9KEmzvAAAAAAAAAAAzQQjvS4RsT+WUc++tRV4vvcnwbw890O+AAAAAAAAAAAz+SQ8wn6yP6vtAD/ZjsG+24kfvNNpnr0AAAAAAAAAAHPcoz32tGa6aqmfNdXv2S9mUVg6ZcKqtAAAgD8AAIA/0/QxPteyQzyCxxa9LuZKPEDBCj4XS5+9AACAPwAAgD/NCf68G0p7P1DQlr3wKxm/b/2RvKxlFTwAAAAAAAAAAIojpT6kelo/5/aavHIB5L5mumA+60hEvgAAAAAAAAAAAF5cPX1TLD/mgG29UoPEvpXsQzvlyNu7AAAAAAAAAABAMEK+5ea1PxG9D795S9i+mLGYvihD8L0AAAAAAAAAAADnF72nOQs+TeZuPg39Vr54Cs09J7BAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf4RhwFJMc0CUhpRSlIwBbJRL3owBdJRHQJPa/4xk/bF1fZQoaAZoCWgPQwjgE+tUuXxxQJSGlFKUaBVLwGgWR0CT21ByCFsYdX2UKGgGaAloD0MIyjMvhx13c0CUhpRSlGgVS+poFkdAk9uL1mJ3xHV9lChoBmgJaA9DCCl5dY5BV3FAlIaUUpRoFUvEaBZHQJPboVclgMN1fZQoaAZoCWgPQwjKT6p9Ol1wQJSGlFKUaBVL3GgWR0CT3OTs6aLGdX2UKGgGaAloD0MIqB5pcFsZb0CUhpRSlGgVS9RoFkdAk9z5Z8rqdHV9lChoBmgJaA9DCMXnTrD/6G9AlIaUUpRoFUvtaBZHQJPdz2vjfel1fZQoaAZoCWgPQwgXvOgriCFxQJSGlFKUaBVLzmgWR0CT3qRp1zQvdX2UKGgGaAloD0MIjpPCvMckbkCUhpRSlGgVS91oFkdAk996be/HpHV9lChoBmgJaA9DCGGnWDUIfHFAlIaUUpRoFUvxaBZHQJPflxn3+Mt1fZQoaAZoCWgPQwikNQadkF5tQJSGlFKUaBVL5WgWR0CT39aWom5UdX2UKGgGaAloD0MI05/9SJGwcECUhpRSlGgVS+VoFkdAk+EpiI+GGnV9lChoBmgJaA9DCPDce7jkiHJAlIaUUpRoFUvtaBZHQJPhwRYigTR1fZQoaAZoCWgPQwgDmZ1FLxxxQJSGlFKUaBVL0GgWR0CT4sMiKR+0dX2UKGgGaAloD0MIxO47hkcSckCUhpRSlGgVTQ0BaBZHQJPjGzJIUah1fZQoaAZoCWgPQwhv9gfK7QpzQJSGlFKUaBVL4GgWR0CT41edCmdidX2UKGgGaAloD0MI38X7cTszcUCUhpRSlGgVTTEBaBZHQJPkFAeJYT11fZQoaAZoCWgPQwhauoJtxKNwQJSGlFKUaBVL6WgWR0CT5Izch1TzdX2UKGgGaAloD0MIe/mdJjPscECUhpRSlGgVS9BoFkdAk+SxufmLcnV9lChoBmgJaA9DCFZ+GYxRpHFAlIaUUpRoFUvTaBZHQJPlpGnXNC91fZQoaAZoCWgPQwjQnWD/9YZyQJSGlFKUaBVL2GgWR0CT5i6nR9gGdX2UKGgGaAloD0MIJTs2AvHncUCUhpRSlGgVS+xoFkdAk+aFsUIsy3V9lChoBmgJaA9DCBJKXwi5S21AlIaUUpRoFUvkaBZHQJPn8jzI3it1fZQoaAZoCWgPQwhrJ0pConhyQJSGlFKUaBVL12gWR0CT6CiCaqjrdX2UKGgGaAloD0MIweYcPJOJY0CUhpRSlGgVTegDaBZHQJPo1pblijN1fZQoaAZoCWgPQwg3+pgPCP1wQJSGlFKUaBVL1WgWR0CT6ZosZpBYdX2UKGgGaAloD0MI9diWASeYcUCUhpRSlGgVS/loFkdAk+oUB4lhPXV9lChoBmgJaA9DCCApIsMqvGVAlIaUUpRoFU3oA2gWR0CT6posI3R5dX2UKGgGaAloD0MIb4Jvmv4JcUCUhpRSlGgVS8xoFkdAk+qogmqo63V9lChoBmgJaA9DCAra5PBJ+HJAlIaUUpRoFUvWaBZHQJPqyEDhcZ91fZQoaAZoCWgPQwiWmGclrR1cQJSGlFKUaBVN6ANoFkdAk+stoN/e+HV9lChoBmgJaA9DCHNmu0Kfm29AlIaUUpRoFUvRaBZHQJPrmCAc1fp1fZQoaAZoCWgPQwhvLCgMSoFiQJSGlFKUaBVN6ANoFkdAk+u10knkUHV9lChoBmgJaA9DCMBeYcH9XHBAlIaUUpRoFUvbaBZHQJPsNdJJ5FB1fZQoaAZoCWgPQwg7xD9s6XJxQJSGlFKUaBVNDQFoFkdAk+2mdiDujXV9lChoBmgJaA9DCM/zp43q1HJAlIaUUpRoFUvkaBZHQJPuAZiuuA91fZQoaAZoCWgPQwhZMPFHUYBxQJSGlFKUaBVLz2gWR0CT7rz9S/CZdX2UKGgGaAloD0MI+yKhLWeXbkCUhpRSlGgVS9NoFkdAk+9JRwZOz3V9lChoBmgJaA9DCGuDE9GvunBAlIaUUpRoFUvdaBZHQJPwCs/6frd1fZQoaAZoCWgPQwjj4qjcREpwQJSGlFKUaBVL8GgWR0CT8J9LHuJDdX2UKGgGaAloD0MIVP61vPK3cECUhpRSlGgVS9toFkdAk/ChV+7UX3V9lChoBmgJaA9DCBrBxvXv4m5AlIaUUpRoFUveaBZHQJPxKYiPhhp1fZQoaAZoCWgPQwgXuhKBKiJxQJSGlFKUaBVNAQFoFkdAk/E33pOernV9lChoBmgJaA9DCK8mT1mNAXBAlIaUUpRoFUvkaBZHQJPxcjzI3it1fZQoaAZoCWgPQwgxem6h6zNxQJSGlFKUaBVL72gWR0CT8ledCmdidX2UKGgGaAloD0MIHxDoTNqzX0CUhpRSlGgVTegDaBZHQJPzWakRBeJ1fZQoaAZoCWgPQwhPsP86t8pwQJSGlFKUaBVL3mgWR0CT9GqdpZfVdX2UKGgGaAloD0MIJEc6AyNfckCUhpRSlGgVS+xoFkdAk/RrGJemenV9lChoBmgJaA9DCGXCL/VzPW1AlIaUUpRoFUvmaBZHQJP1WIYWLxZ1fZQoaAZoCWgPQwi/mC1ZlVVxQJSGlFKUaBVL92gWR0CT9kQLNOdodX2UKGgGaAloD0MIu3zrw/okcUCUhpRSlGgVS8xoFkdAk/Zr+tKZlXV9lChoBmgJaA9DCIF5yJTPP3FAlIaUUpRoFUvvaBZHQJP2xArxy4p1fZQoaAZoCWgPQwhYG2Mn/DRxQJSGlFKUaBVL7GgWR0CT9zGcnVoYdX2UKGgGaAloD0MIP4wQHm2IcECUhpRSlGgVS85oFkdAk/c3wb2lEnV9lChoBmgJaA9DCJvkR/wKUnFAlIaUUpRoFUvdaBZHQJP3Tkjopx51fZQoaAZoCWgPQwhVTRB136VyQJSGlFKUaBVL32gWR0CT92LDhtLtdX2UKGgGaAloD0MIlddK6O6scUCUhpRSlGgVS9hoFkdAk/gU8JUo8nV9lChoBmgJaA9DCKkXfJqTBnBAlIaUUpRoFUvTaBZHQJP4sqJ/G2l1fZQoaAZoCWgPQwh+jo8W575vQJSGlFKUaBVL2WgWR0CT+VFbFCLNdX2UKGgGaAloD0MINrBVgkX7b0CUhpRSlGgVS+doFkdAk/mdIbwSanV9lChoBmgJaA9DCCSBBpu6t25AlIaUUpRoFUvPaBZHQJP6wwUQCjl1fZQoaAZoCWgPQwiSdTi6ik1wQJSGlFKUaBVNBQFoFkdAk/sjRplBhXV9lChoBmgJaA9DCH0geeeQwHFAlIaUUpRoFUvMaBZHQJP7kuRLbpN1fZQoaAZoCWgPQwgTZARUuCBsQJSGlFKUaBVL2mgWR0CT/B4n4O+adX2UKGgGaAloD0MIyVcCKXHGcECUhpRSlGgVTREBaBZHQJP8fF1jiGZ1fZQoaAZoCWgPQwhY/nxbMLxyQJSGlFKUaBVNBgFoFkdAk/yQ176YV3V9lChoBmgJaA9DCPpEniSdlHFAlIaUUpRoFUvJaBZHQJP8oDQqqfh1fZQoaAZoCWgPQwjgvDjxlX1wQJSGlFKUaBVL92gWR0CT/MURnOB2dX2UKGgGaAloD0MI3WETmTkrY0CUhpRSlGgVTegDaBZHQJP9Fvze41B1fZQoaAZoCWgPQwi7JTlg10xjQJSGlFKUaBVN6ANoFkdAk/3JKjBVMnV9lChoBmgJaA9DCKOutfdpYHFAlIaUUpRoFUvPaBZHQJP+Tkiliz91fZQoaAZoCWgPQwjde7jk+AZwQJSGlFKUaBVL4mgWR0CT/mr0rbxmdX2UKGgGaAloD0MIMCx/vi1fcECUhpRSlGgVTRgBaBZHQJP+7gbZOBV1fZQoaAZoCWgPQwidu10vzTpzQJSGlFKUaBVL02gWR0CUADnNxEORdX2UKGgGaAloD0MIou2Yumsyc0CUhpRSlGgVS/ZoFkdAlAA60+kgwHV9lChoBmgJaA9DCNMvEW8damRAlIaUUpRoFU3oA2gWR0CUAJLkS26TdX2UKGgGaAloD0MIv4I0Y1GLcUCUhpRSlGgVS/loFkdAlACqcZtNz3V9lChoBmgJaA9DCEj8ijUcR3BAlIaUUpRoFUvJaBZHQJQA7QD3dsV1fZQoaAZoCWgPQwgEjgQa7MJkQJSGlFKUaBVN6ANoFkdAlAEwlnh86XV9lChoBmgJaA9DCE2DonkA7XFAlIaUUpRoFUvxaBZHQJQBWpJf6XV1fZQoaAZoCWgPQwijVpi+V9ZzQJSGlFKUaBVLzGgWR0CUAWXVsk6cdX2UKGgGaAloD0MIOrAcIQMHb0CUhpRSlGgVS+VoFkdAlAFkz9CNTHV9lChoBmgJaA9DCLb2PlUFVG9AlIaUUpRoFUvsaBZHQJQBjst03fh1fZQoaAZoCWgPQwhJ93MK8vtxQJSGlFKUaBVL7WgWR0CUAbW1MM7VdX2UKGgGaAloD0MIMbd7uQ/icECUhpRSlGgVS+hoFkdAlAJvDYRNAXV9lChoBmgJaA9DCANgPIPGA3BAlIaUUpRoFUvPaBZHQJQCdCw8nu11fZQoaAZoCWgPQwg6HjNQWVBzQJSGlFKUaBVL4WgWR0CUAtyeZof0dX2UKGgGaAloD0MIqtVXV8UqcUCUhpRSlGgVS/VoFkdAlAO1tO2y9nV9lChoBmgJaA9DCJnVO9yOCm1AlIaUUpRoFUvOaBZHQJQEJ19v0iB1fZQoaAZoCWgPQwgo9PqTuAxyQJSGlFKUaBVLz2gWR0CUBJb83uNQdX2UKGgGaAloD0MIbF1qhD5ucECUhpRSlGgVS/BoFkdAlATn4j8k2XV9lChoBmgJaA9DCL06x4BsuHBAlIaUUpRoFUvjaBZHQJQE9Cv5gw51fZQoaAZoCWgPQwhxyAbSBU5wQJSGlFKUaBVL22gWR0CUBSVS4vvjdX2UKGgGaAloD0MIPrFOlW+zcECUhpRSlGgVS9xoFkdAlAVzJhfBvnV9lChoBmgJaA9DCGssYW2M3WtAlIaUUpRoFUveaBZHQJQFqWt2cKB1fZQoaAZoCWgPQwiwWS4bnddvQJSGlFKUaBVL42gWR0CUBc5IpYs/dX2UKGgGaAloD0MICfoLPSKNcUCUhpRSlGgVS+xoFkdAlAX7VvuPWHV9lChoBmgJaA9DCEjcY+kDk3FAlIaUUpRoFUvjaBZHQJQF/2+PBBR1fZQoaAZoCWgPQwhv2LYos4VIQJSGlFKUaBVLyWgWR0CUBnUyYXwcdX2UKGgGaAloD0MIIVZ/hOHqcUCUhpRSlGgVTeICaBZHQJQGlv0h/y51ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
AxlDM-ppo-LunarLander-v2-Try2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b79bd5d01577749320f4e043716b14aec7515dccbdfaf203f2627cb1acc84295
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21153fcd623938897c69b855aef1141d127468127b9747179955a6a2934ee035
3
  size 87929
AxlDM-ppo-LunarLander-v2-Try2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:03b969f01dcfb32896fb985ca5753545fe2436f7d5a3ccff5a3efb65b2b5a7b6
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17acb4e360e0b918e2c5eb12fb43b859dafa9e61f872a1cc63649ff4aac74c0c
3
  size 43201
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 244.04 +/- 73.32
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 256.33 +/- 40.76
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000019C7A289D30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000019C7A289DC0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000019C7A289E50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000019C7A289EE0>", "_build": "<function ActorCriticPolicy._build at 0x0000019C7A289F70>", "forward": "<function ActorCriticPolicy.forward at 0x0000019C7A290040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000019C7A2900D0>", "_predict": "<function ActorCriticPolicy._predict at 0x0000019C7A290160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000019C7A2901F0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000019C7A290280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000019C7A290310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000019C7A28D120>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673155286149352600, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAVBhr6h1jY/b/iivoH4Kb8PF5G+b0CgvQAAAAAAAAAAAMBpu4fEIT7n94s7RruGvgnRfjyWDqy8AAAAAAAAAABm9wM9w8kjujhJLbdX1gGyU4nUuu7GTjYAAIA/AACAP03jnT0ckxm8ogUvvYEm7Lw4SlM9VMg6PgAAgD8AAIA/HSBcvtrrD72f/SC8AhrMupqeeD4CrJk7AACAPwAAgD+ta1i+rgDsvPW3tbvfSD+6RZNOPsP3EzsAAIA/AACAPwAg6TyFS425XMA4M3MsIDCo/247XufEswAAgD8AAIA/7fM6vt8ibD8XnIW+GSJRvzHVIr4GvZq9AAAAAAAAAABNhXU9KXv2PvdYxrw+NA2/lgS+OaMQJrwAAAAAAAAAAN1DWb4UsbC8qGj9upvFTrmaRhs+DBcgOgAAgD8AAIA/ACi8vPE7tT+RHEO/4gFDPTk9rDwc3sU9AAAAAAAAAACj5Ya+H0rSPM+GEztWFLe5lDJqvi0UTboAAIA/AACAPwDtjj3tA6M/veMlPwLdOr8u3Rc8lgFcPgAAAAAAAAAAZmbGOWnwB7wuI9O88Vt1PQMVYD32Frq8AACAPwAAgD8a3PK94WL1Oaj4ez7CGgG9thhrvGbm5D0AAIA/AACAPzP5cb0KuzG7aHXPPGSW+L3lz4w8Ir41PwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJV0z+WZMcUCUhpRSlIwBbJRLyYwBdJRHQJNa+26TW5J1fZQoaAZoCWgPQwikG2FREQxxQJSGlFKUaBVLx2gWR0CTWwKZUkv9dX2UKGgGaAloD0MIm5DWGLS3cUCUhpRSlGgVS8ZoFkdAk1swrlNlAnV9lChoBmgJaA9DCMDtCRJbTnJAlIaUUpRoFUu1aBZHQJNbTmCAc1h1fZQoaAZoCWgPQwinlUIgF89uQJSGlFKUaBVLv2gWR0CTW505EMLGdX2UKGgGaAloD0MIqoB7nj8EckCUhpRSlGgVS/ZoFkdAk1xqBqbjLnV9lChoBmgJaA9DCLNEZ5lFwHBAlIaUUpRoFUvDaBZHQJNcfoC+10F1fZQoaAZoCWgPQwjKbfse9b1HQJSGlFKUaBVLlGgWR0CTXInEVFhHdX2UKGgGaAloD0MIVHQkl3/jcUCUhpRSlGgVS9xoFkdAk10M10knkXV9lChoBmgJaA9DCIv/O6JC7nJAlIaUUpRoFUvnaBZHQJNdOuuA7Pp1fZQoaAZoCWgPQwgZxXJL681xQJSGlFKUaBVLuGgWR0CTXbje9Ba+dX2UKGgGaAloD0MI+tNGdbqscUCUhpRSlGgVS8FoFkdAk16L0J4SpXV9lChoBmgJaA9DCIjaNowCfXJAlIaUUpRoFUvCaBZHQJNeolfJFLF1fZQoaAZoCWgPQwippbkVwlxxQJSGlFKUaBVLzGgWR0CTXs9mHxjKdX2UKGgGaAloD0MI+7K0UzMtcUCUhpRSlGgVS89oFkdAk18ZIUahpXV9lChoBmgJaA9DCO0pOSc2D3JAlIaUUpRoFUvoaBZHQJNfOeVcD8t1fZQoaAZoCWgPQwhfevtz0T5xQJSGlFKUaBVL5GgWR0CTXznmaH9FdX2UKGgGaAloD0MIZ2X7kLdxUECUhpRSlGgVS5xoFkdAk19xMajveHV9lChoBmgJaA9DCPVnP1KE9XFAlIaUUpRoFUvjaBZHQJNf8jcEeQx1fZQoaAZoCWgPQwgXnSy1nu5xQJSGlFKUaBVL/mgWR0CTYB4/u9eydX2UKGgGaAloD0MI/cHAc+/GcECUhpRSlGgVS8RoFkdAk2BQbEP1+XV9lChoBmgJaA9DCB7AIr9+RnBAlIaUUpRoFUvJaBZHQJNgX8hs67x1fZQoaAZoCWgPQwgmVHB4ARdwQJSGlFKUaBVLvGgWR0CTYKmEGqxUdX2UKGgGaAloD0MIlBYuq7DCb0CUhpRSlGgVS6doFkdAk2Hi2tuDSXV9lChoBmgJaA9DCFgczvzqPHFAlIaUUpRoFUuwaBZHQJNh/HR1HON1fZQoaAZoCWgPQwjg2omSkGxyQJSGlFKUaBVL+WgWR0CTYqJXyRSxdX2UKGgGaAloD0MIhPBo48jicUCUhpRSlGgVS8BoFkdAk2Ln+l0o0HV9lChoBmgJaA9DCKfJjLeVlnBAlIaUUpRoFUu5aBZHQJNjIljVhCt1fZQoaAZoCWgPQwgK9fQRePNxQJSGlFKUaBVLymgWR0CTYzz4UN8WdX2UKGgGaAloD0MILLr1mp7QcUCUhpRSlGgVS+VoFkdAk2Nctf5ULnV9lChoBmgJaA9DCLHCLR+J/XBAlIaUUpRoFUvhaBZHQJNjsroW56N1fZQoaAZoCWgPQwjmWx/WWztxQJSGlFKUaBVLx2gWR0CTZCBMBZIQdX2UKGgGaAloD0MIroIY6BqScUCUhpRSlGgVS9RoFkdAk2Q1zMibD3V9lChoBmgJaA9DCLK7QElBbHFAlIaUUpRoFUvlaBZHQJNlCL4vexh1fZQoaAZoCWgPQwgRbjKqDAFxQJSGlFKUaBVLoGgWR0CTZTCuEEkjdX2UKGgGaAloD0MIbcZpiCq3cECUhpRSlGgVS+FoFkdAk2VEIw/PgXV9lChoBmgJaA9DCCHlJ9U+pnJAlIaUUpRoFUv7aBZHQJNlagXdj5N1fZQoaAZoCWgPQwjwp8ZLt7xwQJSGlFKUaBVLqWgWR0CTZXRDTjNqdX2UKGgGaAloD0MIsTGvI85JcECUhpRSlGgVS7NoFkdAk2a32ZiNKnV9lChoBmgJaA9DCD/9Z83PSnFAlIaUUpRoFUu5aBZHQJNm8jfNzKd1fZQoaAZoCWgPQwjQ1OsWAYduQJSGlFKUaBVLv2gWR0CTZzK6WgOCdX2UKGgGaAloD0MI8djPYqkGckCUhpRSlGgVS9xoFkdAk2dXl8w6AHV9lChoBmgJaA9DCPFJJxLMvm9AlIaUUpRoFUugaBZHQJNncTDfm9x1fZQoaAZoCWgPQwhF8pVAylpvQJSGlFKUaBVLyGgWR0CTZ7je9Ba+dX2UKGgGaAloD0MIuf5dn7nVcUCUhpRSlGgVTQ4BaBZHQJNoFxQzk6t1fZQoaAZoCWgPQwhblq/L8P1wQJSGlFKUaBVLs2gWR0CTaQ7jDKoydX2UKGgGaAloD0MItK1mnXHYcECUhpRSlGgVS8doFkdAk2kVB+nZTXV9lChoBmgJaA9DCBeBsb4BHHFAlIaUUpRoFUv2aBZHQJNpKYNRWLh1fZQoaAZoCWgPQwiDUN7HkTpxQJSGlFKUaBVLzWgWR0CTaWsMiKR/dX2UKGgGaAloD0MIfVwbKoYIc0CUhpRSlGgVS9loFkdAk2mWDg62fHV9lChoBmgJaA9DCHr9SXyuSHFAlIaUUpRoFUvaaBZHQJNp38iwB5p1fZQoaAZoCWgPQwhLrmLxm3JnQJSGlFKUaBVN6ANoFkdAk2o1zhgmZ3V9lChoBmgJaA9DCKD6B5EM+HBAlIaUUpRoFUu8aBZHQJNrKYNRWLh1fZQoaAZoCWgPQwgg8SvWcJZyQJSGlFKUaBVLyGgWR0CTa0UornTzdX2UKGgGaAloD0MIpfYi2g7IbkCUhpRSlGgVS8BoFkdAk2taqbSZ0HV9lChoBmgJaA9DCFkWTPyRoXBAlIaUUpRoFUvqaBZHQJNrfHU+cH51fZQoaAZoCWgPQwhJvhJIiW1vQJSGlFKUaBVLw2gWR0CTa66hQFcIdX2UKGgGaAloD0MIwXPv4VIRdECUhpRSlGgVS+1oFkdAk2vBEORT0nV9lChoBmgJaA9DCLtE9dbAOXFAlIaUUpRoFUvHaBZHQJNsFg4Otnx1fZQoaAZoCWgPQwj8brplx3pxQJSGlFKUaBVLrGgWR0CTbPZP2wmmdX2UKGgGaAloD0MI3IE65dHIbkCUhpRSlGgVS8hoFkdAk21dvKlpGnV9lChoBmgJaA9DCEbsE0DxqHBAlIaUUpRoFUvdaBZHQJNtcTDfm9x1fZQoaAZoCWgPQwiSIjKsIrdwQJSGlFKUaBVL4WgWR0CTbYGTLW7OdX2UKGgGaAloD0MIvLA1Wzl0cECUhpRSlGgVS+ZoFkdAk22yuuA7P3V9lChoBmgJaA9DCN+/eXHipW9AlIaUUpRoFUvCaBZHQJNuBayKNyZ1fZQoaAZoCWgPQwjGT+Pe/I9iQJSGlFKUaBVN6ANoFkdAk24eP/7zkXV9lChoBmgJaA9DCIM1zqaj53BAlIaUUpRoFUvJaBZHQJNvNcyFfzB1fZQoaAZoCWgPQwirWz0nPbdvQJSGlFKUaBVLxWgWR0CTb1mkWRA9dX2UKGgGaAloD0MIM1TFVHr2cECUhpRSlGgVS9FoFkdAk291SXMQmXV9lChoBmgJaA9DCEIIyJfQ/XBAlIaUUpRoFUvKaBZHQJNwHj81n/V1fZQoaAZoCWgPQwgg1EUK5UtzQJSGlFKUaBVL8mgWR0CTcH6BRQ7+dX2UKGgGaAloD0MIF2U2yCROcUCUhpRSlGgVS6ZoFkdAk3DYna37UHV9lChoBmgJaA9DCJxqLcwCp3BAlIaUUpRoFUuyaBZHQJNxKojv/ip1fZQoaAZoCWgPQwgdW88QDsdmQJSGlFKUaBVN6ANoFkdAk3FMU/OdG3V9lChoBmgJaA9DCNl22hpR8nFAlIaUUpRoFUvqaBZHQJNxyUFB6a91fZQoaAZoCWgPQwgWTWcng5lwQJSGlFKUaBVLumgWR0CTceb0OEuhdX2UKGgGaAloD0MIfv/mxYnacECUhpRSlGgVS81oFkdAk3HzPa+N+HV9lChoBmgJaA9DCKNAn8jTtnJAlIaUUpRoFUvhaBZHQJNyApnYg7p1fZQoaAZoCWgPQwj/PA0YZFpwQJSGlFKUaBVL7GgWR0CTcwi++M6zdX2UKGgGaAloD0MIYeKPog74cECUhpRSlGgVTWsBaBZHQJNzKH31zyV1fZQoaAZoCWgPQwgleEMaVVZxQJSGlFKUaBVLuWgWR0CTc0MdcSoPdX2UKGgGaAloD0MIUOPe/EZzcUCUhpRSlGgVTfABaBZHQJNz6wwCbMJ1fZQoaAZoCWgPQwiDoQ4r3ClzQJSGlFKUaBVL6GgWR0CTdBH1e0HAdX2UKGgGaAloD0MIdSDrqVW5cUCUhpRSlGgVS75oFkdAk3QeP3i71HV9lChoBmgJaA9DCKJhMeraI3BAlIaUUpRoFUutaBZHQJN0IlfJFLF1fZQoaAZoCWgPQwiU+UffpC1wQJSGlFKUaBVLuGgWR0CTdRYOUdJbdX2UKGgGaAloD0MICvZf5yarcUCUhpRSlGgVS9VoFkdAk3WQ71ZkkXV9lChoBmgJaA9DCJzDtdpDU29AlIaUUpRoFUu2aBZHQJN1sbR4QjF1fZQoaAZoCWgPQwiwjuOHSiFxQJSGlFKUaBVL02gWR0CTdiqI7/4qdX2UKGgGaAloD0MIuYlamtsVcECUhpRSlGgVS99oFkdAk3aO49X9znV9lChoBmgJaA9DCI1jJHvENXJAlIaUUpRoFUu6aBZHQJN29lDneSB1fZQoaAZoCWgPQwjtSPWdH1RwQJSGlFKUaBVLsGgWR0CTdvtvXK8tdX2UKGgGaAloD0MILJs5JLVWR0CUhpRSlGgVS5loFkdAk3daqfe1r3V9lChoBmgJaA9DCE/JObHHo3BAlIaUUpRoFUvjaBZHQJN3+28Zk091fZQoaAZoCWgPQwiztFNzeWdzQJSGlFKUaBVLuGgWR0CTeBL74zrNdX2UKGgGaAloD0MI+5XOh2d0cUCUhpRSlGgVS+BoFkdAk3j+gQHzH3V9lChoBmgJaA9DCNS7eD9uXHJAlIaUUpRoFUv2aBZHQJN5Ri8WbgF1fZQoaAZoCWgPQwhEatrFtONvQJSGlFKUaBVLxmgWR0CTeXVJtix3dX2UKGgGaAloD0MIwhIPKBsZb0CUhpRSlGgVS65oFkdAk3pvJV81GnV9lChoBmgJaA9DCCTRyyhWYnFAlIaUUpRoFUvcaBZHQJN6mSEDhcZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000002AD702E8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002AD702E80D0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002AD702E8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002AD702E81F0>", "_build": "<function ActorCriticPolicy._build at 0x000002AD702E8280>", "forward": "<function ActorCriticPolicy.forward at 0x000002AD702E8310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002AD702E83A0>", "_predict": "<function ActorCriticPolicy._predict at 0x000002AD702E8430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002AD702E84C0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002AD702E8550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002AD702E85E0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000002AD702E18A0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673158217400907500, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCbZz7MsIQ/JvtaPvCxwL6N9Pk+hloQPgAAAAAAAAAAgM4Ivez0QD8XoCa8dfDwvlDn87tycRi8AAAAAAAAAADAex2+xD+/PpINgj4Jl7O+GNbpPHuBjz0AAAAAAAAAADNKAr4KIiW7+5mHvExPijze6dI6CpBuPQAAgD8AAIA/QJLePT5NpT4tDRm8LNudvijzujyLia+8AAAAAAAAAADT+02+TwEHP5kvEz5l8dq+ai5wvUKN9D0AAAAAAAAAAM3X8LwAaaQ/xEHLveSWFL/Gz3C9KEmzvAAAAAAAAAAAzQQjvS4RsT+WUc++tRV4vvcnwbw890O+AAAAAAAAAAAz+SQ8wn6yP6vtAD/ZjsG+24kfvNNpnr0AAAAAAAAAAHPcoz32tGa6aqmfNdXv2S9mUVg6ZcKqtAAAgD8AAIA/0/QxPteyQzyCxxa9LuZKPEDBCj4XS5+9AACAPwAAgD/NCf68G0p7P1DQlr3wKxm/b/2RvKxlFTwAAAAAAAAAAIojpT6kelo/5/aavHIB5L5mumA+60hEvgAAAAAAAAAAAF5cPX1TLD/mgG29UoPEvpXsQzvlyNu7AAAAAAAAAABAMEK+5ea1PxG9D795S9i+mLGYvihD8L0AAAAAAAAAAADnF72nOQs+TeZuPg39Vr54Cs09J7BAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf4RhwFJMc0CUhpRSlIwBbJRL3owBdJRHQJPa/4xk/bF1fZQoaAZoCWgPQwjgE+tUuXxxQJSGlFKUaBVLwGgWR0CT21ByCFsYdX2UKGgGaAloD0MIyjMvhx13c0CUhpRSlGgVS+poFkdAk9uL1mJ3xHV9lChoBmgJaA9DCCl5dY5BV3FAlIaUUpRoFUvEaBZHQJPboVclgMN1fZQoaAZoCWgPQwjKT6p9Ol1wQJSGlFKUaBVL3GgWR0CT3OTs6aLGdX2UKGgGaAloD0MIqB5pcFsZb0CUhpRSlGgVS9RoFkdAk9z5Z8rqdHV9lChoBmgJaA9DCMXnTrD/6G9AlIaUUpRoFUvtaBZHQJPdz2vjfel1fZQoaAZoCWgPQwgXvOgriCFxQJSGlFKUaBVLzmgWR0CT3qRp1zQvdX2UKGgGaAloD0MIjpPCvMckbkCUhpRSlGgVS91oFkdAk996be/HpHV9lChoBmgJaA9DCGGnWDUIfHFAlIaUUpRoFUvxaBZHQJPflxn3+Mt1fZQoaAZoCWgPQwikNQadkF5tQJSGlFKUaBVL5WgWR0CT39aWom5UdX2UKGgGaAloD0MI05/9SJGwcECUhpRSlGgVS+VoFkdAk+EpiI+GGnV9lChoBmgJaA9DCPDce7jkiHJAlIaUUpRoFUvtaBZHQJPhwRYigTR1fZQoaAZoCWgPQwgDmZ1FLxxxQJSGlFKUaBVL0GgWR0CT4sMiKR+0dX2UKGgGaAloD0MIxO47hkcSckCUhpRSlGgVTQ0BaBZHQJPjGzJIUah1fZQoaAZoCWgPQwhv9gfK7QpzQJSGlFKUaBVL4GgWR0CT41edCmdidX2UKGgGaAloD0MI38X7cTszcUCUhpRSlGgVTTEBaBZHQJPkFAeJYT11fZQoaAZoCWgPQwhauoJtxKNwQJSGlFKUaBVL6WgWR0CT5Izch1TzdX2UKGgGaAloD0MIe/mdJjPscECUhpRSlGgVS9BoFkdAk+SxufmLcnV9lChoBmgJaA9DCFZ+GYxRpHFAlIaUUpRoFUvTaBZHQJPlpGnXNC91fZQoaAZoCWgPQwjQnWD/9YZyQJSGlFKUaBVL2GgWR0CT5i6nR9gGdX2UKGgGaAloD0MIJTs2AvHncUCUhpRSlGgVS+xoFkdAk+aFsUIsy3V9lChoBmgJaA9DCBJKXwi5S21AlIaUUpRoFUvkaBZHQJPn8jzI3it1fZQoaAZoCWgPQwhrJ0pConhyQJSGlFKUaBVL12gWR0CT6CiCaqjrdX2UKGgGaAloD0MIweYcPJOJY0CUhpRSlGgVTegDaBZHQJPo1pblijN1fZQoaAZoCWgPQwg3+pgPCP1wQJSGlFKUaBVL1WgWR0CT6ZosZpBYdX2UKGgGaAloD0MI9diWASeYcUCUhpRSlGgVS/loFkdAk+oUB4lhPXV9lChoBmgJaA9DCCApIsMqvGVAlIaUUpRoFU3oA2gWR0CT6posI3R5dX2UKGgGaAloD0MIb4Jvmv4JcUCUhpRSlGgVS8xoFkdAk+qogmqo63V9lChoBmgJaA9DCAra5PBJ+HJAlIaUUpRoFUvWaBZHQJPqyEDhcZ91fZQoaAZoCWgPQwiWmGclrR1cQJSGlFKUaBVN6ANoFkdAk+stoN/e+HV9lChoBmgJaA9DCHNmu0Kfm29AlIaUUpRoFUvRaBZHQJPrmCAc1fp1fZQoaAZoCWgPQwhvLCgMSoFiQJSGlFKUaBVN6ANoFkdAk+u10knkUHV9lChoBmgJaA9DCMBeYcH9XHBAlIaUUpRoFUvbaBZHQJPsNdJJ5FB1fZQoaAZoCWgPQwg7xD9s6XJxQJSGlFKUaBVNDQFoFkdAk+2mdiDujXV9lChoBmgJaA9DCM/zp43q1HJAlIaUUpRoFUvkaBZHQJPuAZiuuA91fZQoaAZoCWgPQwhZMPFHUYBxQJSGlFKUaBVLz2gWR0CT7rz9S/CZdX2UKGgGaAloD0MI+yKhLWeXbkCUhpRSlGgVS9NoFkdAk+9JRwZOz3V9lChoBmgJaA9DCGuDE9GvunBAlIaUUpRoFUvdaBZHQJPwCs/6frd1fZQoaAZoCWgPQwjj4qjcREpwQJSGlFKUaBVL8GgWR0CT8J9LHuJDdX2UKGgGaAloD0MIVP61vPK3cECUhpRSlGgVS9toFkdAk/ChV+7UX3V9lChoBmgJaA9DCBrBxvXv4m5AlIaUUpRoFUveaBZHQJPxKYiPhhp1fZQoaAZoCWgPQwgXuhKBKiJxQJSGlFKUaBVNAQFoFkdAk/E33pOernV9lChoBmgJaA9DCK8mT1mNAXBAlIaUUpRoFUvkaBZHQJPxcjzI3it1fZQoaAZoCWgPQwgxem6h6zNxQJSGlFKUaBVL72gWR0CT8ledCmdidX2UKGgGaAloD0MIHxDoTNqzX0CUhpRSlGgVTegDaBZHQJPzWakRBeJ1fZQoaAZoCWgPQwhPsP86t8pwQJSGlFKUaBVL3mgWR0CT9GqdpZfVdX2UKGgGaAloD0MIJEc6AyNfckCUhpRSlGgVS+xoFkdAk/RrGJemenV9lChoBmgJaA9DCGXCL/VzPW1AlIaUUpRoFUvmaBZHQJP1WIYWLxZ1fZQoaAZoCWgPQwi/mC1ZlVVxQJSGlFKUaBVL92gWR0CT9kQLNOdodX2UKGgGaAloD0MIu3zrw/okcUCUhpRSlGgVS8xoFkdAk/Zr+tKZlXV9lChoBmgJaA9DCIF5yJTPP3FAlIaUUpRoFUvvaBZHQJP2xArxy4p1fZQoaAZoCWgPQwhYG2Mn/DRxQJSGlFKUaBVL7GgWR0CT9zGcnVoYdX2UKGgGaAloD0MIP4wQHm2IcECUhpRSlGgVS85oFkdAk/c3wb2lEnV9lChoBmgJaA9DCJvkR/wKUnFAlIaUUpRoFUvdaBZHQJP3Tkjopx51fZQoaAZoCWgPQwhVTRB136VyQJSGlFKUaBVL32gWR0CT92LDhtLtdX2UKGgGaAloD0MIlddK6O6scUCUhpRSlGgVS9hoFkdAk/gU8JUo8nV9lChoBmgJaA9DCKkXfJqTBnBAlIaUUpRoFUvTaBZHQJP4sqJ/G2l1fZQoaAZoCWgPQwh+jo8W575vQJSGlFKUaBVL2WgWR0CT+VFbFCLNdX2UKGgGaAloD0MINrBVgkX7b0CUhpRSlGgVS+doFkdAk/mdIbwSanV9lChoBmgJaA9DCCSBBpu6t25AlIaUUpRoFUvPaBZHQJP6wwUQCjl1fZQoaAZoCWgPQwiSdTi6ik1wQJSGlFKUaBVNBQFoFkdAk/sjRplBhXV9lChoBmgJaA9DCH0geeeQwHFAlIaUUpRoFUvMaBZHQJP7kuRLbpN1fZQoaAZoCWgPQwgTZARUuCBsQJSGlFKUaBVL2mgWR0CT/B4n4O+adX2UKGgGaAloD0MIyVcCKXHGcECUhpRSlGgVTREBaBZHQJP8fF1jiGZ1fZQoaAZoCWgPQwhY/nxbMLxyQJSGlFKUaBVNBgFoFkdAk/yQ176YV3V9lChoBmgJaA9DCPpEniSdlHFAlIaUUpRoFUvJaBZHQJP8oDQqqfh1fZQoaAZoCWgPQwjgvDjxlX1wQJSGlFKUaBVL92gWR0CT/MURnOB2dX2UKGgGaAloD0MI3WETmTkrY0CUhpRSlGgVTegDaBZHQJP9Fvze41B1fZQoaAZoCWgPQwi7JTlg10xjQJSGlFKUaBVN6ANoFkdAk/3JKjBVMnV9lChoBmgJaA9DCKOutfdpYHFAlIaUUpRoFUvPaBZHQJP+Tkiliz91fZQoaAZoCWgPQwjde7jk+AZwQJSGlFKUaBVL4mgWR0CT/mr0rbxmdX2UKGgGaAloD0MIMCx/vi1fcECUhpRSlGgVTRgBaBZHQJP+7gbZOBV1fZQoaAZoCWgPQwidu10vzTpzQJSGlFKUaBVL02gWR0CUADnNxEORdX2UKGgGaAloD0MIou2Yumsyc0CUhpRSlGgVS/ZoFkdAlAA60+kgwHV9lChoBmgJaA9DCNMvEW8damRAlIaUUpRoFU3oA2gWR0CUAJLkS26TdX2UKGgGaAloD0MIv4I0Y1GLcUCUhpRSlGgVS/loFkdAlACqcZtNz3V9lChoBmgJaA9DCEj8ijUcR3BAlIaUUpRoFUvJaBZHQJQA7QD3dsV1fZQoaAZoCWgPQwgEjgQa7MJkQJSGlFKUaBVN6ANoFkdAlAEwlnh86XV9lChoBmgJaA9DCE2DonkA7XFAlIaUUpRoFUvxaBZHQJQBWpJf6XV1fZQoaAZoCWgPQwijVpi+V9ZzQJSGlFKUaBVLzGgWR0CUAWXVsk6cdX2UKGgGaAloD0MIOrAcIQMHb0CUhpRSlGgVS+VoFkdAlAFkz9CNTHV9lChoBmgJaA9DCLb2PlUFVG9AlIaUUpRoFUvsaBZHQJQBjst03fh1fZQoaAZoCWgPQwhJ93MK8vtxQJSGlFKUaBVL7WgWR0CUAbW1MM7VdX2UKGgGaAloD0MIMbd7uQ/icECUhpRSlGgVS+hoFkdAlAJvDYRNAXV9lChoBmgJaA9DCANgPIPGA3BAlIaUUpRoFUvPaBZHQJQCdCw8nu11fZQoaAZoCWgPQwg6HjNQWVBzQJSGlFKUaBVL4WgWR0CUAtyeZof0dX2UKGgGaAloD0MIqtVXV8UqcUCUhpRSlGgVS/VoFkdAlAO1tO2y9nV9lChoBmgJaA9DCJnVO9yOCm1AlIaUUpRoFUvOaBZHQJQEJ19v0iB1fZQoaAZoCWgPQwgo9PqTuAxyQJSGlFKUaBVLz2gWR0CUBJb83uNQdX2UKGgGaAloD0MIbF1qhD5ucECUhpRSlGgVS/BoFkdAlATn4j8k2XV9lChoBmgJaA9DCL06x4BsuHBAlIaUUpRoFUvjaBZHQJQE9Cv5gw51fZQoaAZoCWgPQwhxyAbSBU5wQJSGlFKUaBVL22gWR0CUBSVS4vvjdX2UKGgGaAloD0MIPrFOlW+zcECUhpRSlGgVS9xoFkdAlAVzJhfBvnV9lChoBmgJaA9DCGssYW2M3WtAlIaUUpRoFUveaBZHQJQFqWt2cKB1fZQoaAZoCWgPQwiwWS4bnddvQJSGlFKUaBVL42gWR0CUBc5IpYs/dX2UKGgGaAloD0MICfoLPSKNcUCUhpRSlGgVS+xoFkdAlAX7VvuPWHV9lChoBmgJaA9DCEjcY+kDk3FAlIaUUpRoFUvjaBZHQJQF/2+PBBR1fZQoaAZoCWgPQwhv2LYos4VIQJSGlFKUaBVLyWgWR0CUBnUyYXwcdX2UKGgGaAloD0MIIVZ/hOHqcUCUhpRSlGgVTeICaBZHQJQGlv0h/y51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 244.04301939379965, "std_reward": 73.31766441521374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T00:52:58.396347"}
 
1
+ {"mean_reward": 256.32616191736497, "std_reward": 40.755449780766114, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T01:32:11.423401"}