Daniyal commited on
Commit
dd2f81d
·
1 Parent(s): 5df2ade

Upload PPO LunarLander-v2 trained agent

Browse files
AxlDM-ppo-LunarLander-v2-Try2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987e4e06d21449968679ce35536e9cbf560074f6d0a7c8cc62871badfeb39bf1
3
+ size 146954
AxlDM-ppo-LunarLander-v2-Try2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
AxlDM-ppo-LunarLander-v2-Try2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x0000019C7A289D30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000019C7A289DC0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000019C7A289E50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000019C7A289EE0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x0000019C7A289F70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x0000019C7A290040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000019C7A2900D0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x0000019C7A290160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000019C7A2901F0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000019C7A290280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000019C7A290310>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x0000019C7A28D120>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673155286149352600,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAVBhr6h1jY/b/iivoH4Kb8PF5G+b0CgvQAAAAAAAAAAAMBpu4fEIT7n94s7RruGvgnRfjyWDqy8AAAAAAAAAABm9wM9w8kjujhJLbdX1gGyU4nUuu7GTjYAAIA/AACAP03jnT0ckxm8ogUvvYEm7Lw4SlM9VMg6PgAAgD8AAIA/HSBcvtrrD72f/SC8AhrMupqeeD4CrJk7AACAPwAAgD+ta1i+rgDsvPW3tbvfSD+6RZNOPsP3EzsAAIA/AACAPwAg6TyFS425XMA4M3MsIDCo/247XufEswAAgD8AAIA/7fM6vt8ibD8XnIW+GSJRvzHVIr4GvZq9AAAAAAAAAABNhXU9KXv2PvdYxrw+NA2/lgS+OaMQJrwAAAAAAAAAAN1DWb4UsbC8qGj9upvFTrmaRhs+DBcgOgAAgD8AAIA/ACi8vPE7tT+RHEO/4gFDPTk9rDwc3sU9AAAAAAAAAACj5Ya+H0rSPM+GEztWFLe5lDJqvi0UTboAAIA/AACAPwDtjj3tA6M/veMlPwLdOr8u3Rc8lgFcPgAAAAAAAAAAZmbGOWnwB7wuI9O88Vt1PQMVYD32Frq8AACAPwAAgD8a3PK94WL1Oaj4ez7CGgG9thhrvGbm5D0AAIA/AACAPzP5cb0KuzG7aHXPPGSW+L3lz4w8Ir41PwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJV0z+WZMcUCUhpRSlIwBbJRLyYwBdJRHQJNa+26TW5J1fZQoaAZoCWgPQwikG2FREQxxQJSGlFKUaBVLx2gWR0CTWwKZUkv9dX2UKGgGaAloD0MIm5DWGLS3cUCUhpRSlGgVS8ZoFkdAk1swrlNlAnV9lChoBmgJaA9DCMDtCRJbTnJAlIaUUpRoFUu1aBZHQJNbTmCAc1h1fZQoaAZoCWgPQwinlUIgF89uQJSGlFKUaBVLv2gWR0CTW505EMLGdX2UKGgGaAloD0MIqoB7nj8EckCUhpRSlGgVS/ZoFkdAk1xqBqbjLnV9lChoBmgJaA9DCLNEZ5lFwHBAlIaUUpRoFUvDaBZHQJNcfoC+10F1fZQoaAZoCWgPQwjKbfse9b1HQJSGlFKUaBVLlGgWR0CTXInEVFhHdX2UKGgGaAloD0MIVHQkl3/jcUCUhpRSlGgVS9xoFkdAk10M10knkXV9lChoBmgJaA9DCIv/O6JC7nJAlIaUUpRoFUvnaBZHQJNdOuuA7Pp1fZQoaAZoCWgPQwgZxXJL681xQJSGlFKUaBVLuGgWR0CTXbje9Ba+dX2UKGgGaAloD0MI+tNGdbqscUCUhpRSlGgVS8FoFkdAk16L0J4SpXV9lChoBmgJaA9DCIjaNowCfXJAlIaUUpRoFUvCaBZHQJNeolfJFLF1fZQoaAZoCWgPQwippbkVwlxxQJSGlFKUaBVLzGgWR0CTXs9mHxjKdX2UKGgGaAloD0MI+7K0UzMtcUCUhpRSlGgVS89oFkdAk18ZIUahpXV9lChoBmgJaA9DCO0pOSc2D3JAlIaUUpRoFUvoaBZHQJNfOeVcD8t1fZQoaAZoCWgPQwhfevtz0T5xQJSGlFKUaBVL5GgWR0CTXznmaH9FdX2UKGgGaAloD0MIZ2X7kLdxUECUhpRSlGgVS5xoFkdAk19xMajveHV9lChoBmgJaA9DCPVnP1KE9XFAlIaUUpRoFUvjaBZHQJNf8jcEeQx1fZQoaAZoCWgPQwgXnSy1nu5xQJSGlFKUaBVL/mgWR0CTYB4/u9eydX2UKGgGaAloD0MI/cHAc+/GcECUhpRSlGgVS8RoFkdAk2BQbEP1+XV9lChoBmgJaA9DCB7AIr9+RnBAlIaUUpRoFUvJaBZHQJNgX8hs67x1fZQoaAZoCWgPQwgmVHB4ARdwQJSGlFKUaBVLvGgWR0CTYKmEGqxUdX2UKGgGaAloD0MIlBYuq7DCb0CUhpRSlGgVS6doFkdAk2Hi2tuDSXV9lChoBmgJaA9DCFgczvzqPHFAlIaUUpRoFUuwaBZHQJNh/HR1HON1fZQoaAZoCWgPQwjg2omSkGxyQJSGlFKUaBVL+WgWR0CTYqJXyRSxdX2UKGgGaAloD0MIhPBo48jicUCUhpRSlGgVS8BoFkdAk2Ln+l0o0HV9lChoBmgJaA9DCKfJjLeVlnBAlIaUUpRoFUu5aBZHQJNjIljVhCt1fZQoaAZoCWgPQwgK9fQRePNxQJSGlFKUaBVLymgWR0CTYzz4UN8WdX2UKGgGaAloD0MILLr1mp7QcUCUhpRSlGgVS+VoFkdAk2Nctf5ULnV9lChoBmgJaA9DCLHCLR+J/XBAlIaUUpRoFUvhaBZHQJNjsroW56N1fZQoaAZoCWgPQwjmWx/WWztxQJSGlFKUaBVLx2gWR0CTZCBMBZIQdX2UKGgGaAloD0MIroIY6BqScUCUhpRSlGgVS9RoFkdAk2Q1zMibD3V9lChoBmgJaA9DCLK7QElBbHFAlIaUUpRoFUvlaBZHQJNlCL4vexh1fZQoaAZoCWgPQwgRbjKqDAFxQJSGlFKUaBVLoGgWR0CTZTCuEEkjdX2UKGgGaAloD0MIbcZpiCq3cECUhpRSlGgVS+FoFkdAk2VEIw/PgXV9lChoBmgJaA9DCCHlJ9U+pnJAlIaUUpRoFUv7aBZHQJNlagXdj5N1fZQoaAZoCWgPQwjwp8ZLt7xwQJSGlFKUaBVLqWgWR0CTZXRDTjNqdX2UKGgGaAloD0MIsTGvI85JcECUhpRSlGgVS7NoFkdAk2a32ZiNKnV9lChoBmgJaA9DCD/9Z83PSnFAlIaUUpRoFUu5aBZHQJNm8jfNzKd1fZQoaAZoCWgPQwjQ1OsWAYduQJSGlFKUaBVLv2gWR0CTZzK6WgOCdX2UKGgGaAloD0MI8djPYqkGckCUhpRSlGgVS9xoFkdAk2dXl8w6AHV9lChoBmgJaA9DCPFJJxLMvm9AlIaUUpRoFUugaBZHQJNncTDfm9x1fZQoaAZoCWgPQwhF8pVAylpvQJSGlFKUaBVLyGgWR0CTZ7je9Ba+dX2UKGgGaAloD0MIuf5dn7nVcUCUhpRSlGgVTQ4BaBZHQJNoFxQzk6t1fZQoaAZoCWgPQwhblq/L8P1wQJSGlFKUaBVLs2gWR0CTaQ7jDKoydX2UKGgGaAloD0MItK1mnXHYcECUhpRSlGgVS8doFkdAk2kVB+nZTXV9lChoBmgJaA9DCBeBsb4BHHFAlIaUUpRoFUv2aBZHQJNpKYNRWLh1fZQoaAZoCWgPQwiDUN7HkTpxQJSGlFKUaBVLzWgWR0CTaWsMiKR/dX2UKGgGaAloD0MIfVwbKoYIc0CUhpRSlGgVS9loFkdAk2mWDg62fHV9lChoBmgJaA9DCHr9SXyuSHFAlIaUUpRoFUvaaBZHQJNp38iwB5p1fZQoaAZoCWgPQwhLrmLxm3JnQJSGlFKUaBVN6ANoFkdAk2o1zhgmZ3V9lChoBmgJaA9DCKD6B5EM+HBAlIaUUpRoFUu8aBZHQJNrKYNRWLh1fZQoaAZoCWgPQwgg8SvWcJZyQJSGlFKUaBVLyGgWR0CTa0UornTzdX2UKGgGaAloD0MIpfYi2g7IbkCUhpRSlGgVS8BoFkdAk2taqbSZ0HV9lChoBmgJaA9DCFkWTPyRoXBAlIaUUpRoFUvqaBZHQJNrfHU+cH51fZQoaAZoCWgPQwhJvhJIiW1vQJSGlFKUaBVLw2gWR0CTa66hQFcIdX2UKGgGaAloD0MIwXPv4VIRdECUhpRSlGgVS+1oFkdAk2vBEORT0nV9lChoBmgJaA9DCLtE9dbAOXFAlIaUUpRoFUvHaBZHQJNsFg4Otnx1fZQoaAZoCWgPQwj8brplx3pxQJSGlFKUaBVLrGgWR0CTbPZP2wmmdX2UKGgGaAloD0MI3IE65dHIbkCUhpRSlGgVS8hoFkdAk21dvKlpGnV9lChoBmgJaA9DCEbsE0DxqHBAlIaUUpRoFUvdaBZHQJNtcTDfm9x1fZQoaAZoCWgPQwiSIjKsIrdwQJSGlFKUaBVL4WgWR0CTbYGTLW7OdX2UKGgGaAloD0MIvLA1Wzl0cECUhpRSlGgVS+ZoFkdAk22yuuA7P3V9lChoBmgJaA9DCN+/eXHipW9AlIaUUpRoFUvCaBZHQJNuBayKNyZ1fZQoaAZoCWgPQwjGT+Pe/I9iQJSGlFKUaBVN6ANoFkdAk24eP/7zkXV9lChoBmgJaA9DCIM1zqaj53BAlIaUUpRoFUvJaBZHQJNvNcyFfzB1fZQoaAZoCWgPQwirWz0nPbdvQJSGlFKUaBVLxWgWR0CTb1mkWRA9dX2UKGgGaAloD0MIM1TFVHr2cECUhpRSlGgVS9FoFkdAk291SXMQmXV9lChoBmgJaA9DCEIIyJfQ/XBAlIaUUpRoFUvKaBZHQJNwHj81n/V1fZQoaAZoCWgPQwgg1EUK5UtzQJSGlFKUaBVL8mgWR0CTcH6BRQ7+dX2UKGgGaAloD0MIF2U2yCROcUCUhpRSlGgVS6ZoFkdAk3DYna37UHV9lChoBmgJaA9DCJxqLcwCp3BAlIaUUpRoFUuyaBZHQJNxKojv/ip1fZQoaAZoCWgPQwgdW88QDsdmQJSGlFKUaBVN6ANoFkdAk3FMU/OdG3V9lChoBmgJaA9DCNl22hpR8nFAlIaUUpRoFUvqaBZHQJNxyUFB6a91fZQoaAZoCWgPQwgWTWcng5lwQJSGlFKUaBVLumgWR0CTceb0OEuhdX2UKGgGaAloD0MIfv/mxYnacECUhpRSlGgVS81oFkdAk3HzPa+N+HV9lChoBmgJaA9DCKNAn8jTtnJAlIaUUpRoFUvhaBZHQJNyApnYg7p1fZQoaAZoCWgPQwj/PA0YZFpwQJSGlFKUaBVL7GgWR0CTcwi++M6zdX2UKGgGaAloD0MIYeKPog74cECUhpRSlGgVTWsBaBZHQJNzKH31zyV1fZQoaAZoCWgPQwgleEMaVVZxQJSGlFKUaBVLuWgWR0CTc0MdcSoPdX2UKGgGaAloD0MIUOPe/EZzcUCUhpRSlGgVTfABaBZHQJNz6wwCbMJ1fZQoaAZoCWgPQwiDoQ4r3ClzQJSGlFKUaBVL6GgWR0CTdBH1e0HAdX2UKGgGaAloD0MIdSDrqVW5cUCUhpRSlGgVS75oFkdAk3QeP3i71HV9lChoBmgJaA9DCKJhMeraI3BAlIaUUpRoFUutaBZHQJN0IlfJFLF1fZQoaAZoCWgPQwiU+UffpC1wQJSGlFKUaBVLuGgWR0CTdRYOUdJbdX2UKGgGaAloD0MICvZf5yarcUCUhpRSlGgVS9VoFkdAk3WQ71ZkkXV9lChoBmgJaA9DCJzDtdpDU29AlIaUUpRoFUu2aBZHQJN1sbR4QjF1fZQoaAZoCWgPQwiwjuOHSiFxQJSGlFKUaBVL02gWR0CTdiqI7/4qdX2UKGgGaAloD0MIuYlamtsVcECUhpRSlGgVS99oFkdAk3aO49X9znV9lChoBmgJaA9DCI1jJHvENXJAlIaUUpRoFUu6aBZHQJN29lDneSB1fZQoaAZoCWgPQwjtSPWdH1RwQJSGlFKUaBVLsGgWR0CTdvtvXK8tdX2UKGgGaAloD0MILJs5JLVWR0CUhpRSlGgVS5loFkdAk3daqfe1r3V9lChoBmgJaA9DCE/JObHHo3BAlIaUUpRoFUvjaBZHQJN3+28Zk091fZQoaAZoCWgPQwiztFNzeWdzQJSGlFKUaBVLuGgWR0CTeBL74zrNdX2UKGgGaAloD0MI+5XOh2d0cUCUhpRSlGgVS+BoFkdAk3j+gQHzH3V9lChoBmgJaA9DCNS7eD9uXHJAlIaUUpRoFUv2aBZHQJN5Ri8WbgF1fZQoaAZoCWgPQwhEatrFtONvQJSGlFKUaBVLxmgWR0CTeXVJtix3dX2UKGgGaAloD0MIwhIPKBsZb0CUhpRSlGgVS65oFkdAk3pvJV81GnV9lChoBmgJaA9DCCTRyyhWYnFAlIaUUpRoFUvcaBZHQJN6mSEDhcZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
AxlDM-ppo-LunarLander-v2-Try2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b79bd5d01577749320f4e043716b14aec7515dccbdfaf203f2627cb1acc84295
3
+ size 87929
AxlDM-ppo-LunarLander-v2-Try2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b969f01dcfb32896fb985ca5753545fe2436f7d5a3ccff5a3efb65b2b5a7b6
3
+ size 43201
AxlDM-ppo-LunarLander-v2-Try2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
AxlDM-ppo-LunarLander-v2-Try2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19044-SP0 10.0.19044
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1
5
+ GPU Enabled: True
6
+ Numpy: 1.22.4
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.42 +/- 20.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000019C7A289D30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000019C7A289DC0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000019C7A289E50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000019C7A289EE0>", "_build": "<function ActorCriticPolicy._build at 0x0000019C7A289F70>", "forward": "<function ActorCriticPolicy.forward at 0x0000019C7A290040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000019C7A2900D0>", "_predict": "<function ActorCriticPolicy._predict at 0x0000019C7A290160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000019C7A2901F0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000019C7A290280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000019C7A290310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000019C7A28D120>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673155286149352600, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAVBhr6h1jY/b/iivoH4Kb8PF5G+b0CgvQAAAAAAAAAAAMBpu4fEIT7n94s7RruGvgnRfjyWDqy8AAAAAAAAAABm9wM9w8kjujhJLbdX1gGyU4nUuu7GTjYAAIA/AACAP03jnT0ckxm8ogUvvYEm7Lw4SlM9VMg6PgAAgD8AAIA/HSBcvtrrD72f/SC8AhrMupqeeD4CrJk7AACAPwAAgD+ta1i+rgDsvPW3tbvfSD+6RZNOPsP3EzsAAIA/AACAPwAg6TyFS425XMA4M3MsIDCo/247XufEswAAgD8AAIA/7fM6vt8ibD8XnIW+GSJRvzHVIr4GvZq9AAAAAAAAAABNhXU9KXv2PvdYxrw+NA2/lgS+OaMQJrwAAAAAAAAAAN1DWb4UsbC8qGj9upvFTrmaRhs+DBcgOgAAgD8AAIA/ACi8vPE7tT+RHEO/4gFDPTk9rDwc3sU9AAAAAAAAAACj5Ya+H0rSPM+GEztWFLe5lDJqvi0UTboAAIA/AACAPwDtjj3tA6M/veMlPwLdOr8u3Rc8lgFcPgAAAAAAAAAAZmbGOWnwB7wuI9O88Vt1PQMVYD32Frq8AACAPwAAgD8a3PK94WL1Oaj4ez7CGgG9thhrvGbm5D0AAIA/AACAPzP5cb0KuzG7aHXPPGSW+L3lz4w8Ir41PwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJV0z+WZMcUCUhpRSlIwBbJRLyYwBdJRHQJNa+26TW5J1fZQoaAZoCWgPQwikG2FREQxxQJSGlFKUaBVLx2gWR0CTWwKZUkv9dX2UKGgGaAloD0MIm5DWGLS3cUCUhpRSlGgVS8ZoFkdAk1swrlNlAnV9lChoBmgJaA9DCMDtCRJbTnJAlIaUUpRoFUu1aBZHQJNbTmCAc1h1fZQoaAZoCWgPQwinlUIgF89uQJSGlFKUaBVLv2gWR0CTW505EMLGdX2UKGgGaAloD0MIqoB7nj8EckCUhpRSlGgVS/ZoFkdAk1xqBqbjLnV9lChoBmgJaA9DCLNEZ5lFwHBAlIaUUpRoFUvDaBZHQJNcfoC+10F1fZQoaAZoCWgPQwjKbfse9b1HQJSGlFKUaBVLlGgWR0CTXInEVFhHdX2UKGgGaAloD0MIVHQkl3/jcUCUhpRSlGgVS9xoFkdAk10M10knkXV9lChoBmgJaA9DCIv/O6JC7nJAlIaUUpRoFUvnaBZHQJNdOuuA7Pp1fZQoaAZoCWgPQwgZxXJL681xQJSGlFKUaBVLuGgWR0CTXbje9Ba+dX2UKGgGaAloD0MI+tNGdbqscUCUhpRSlGgVS8FoFkdAk16L0J4SpXV9lChoBmgJaA9DCIjaNowCfXJAlIaUUpRoFUvCaBZHQJNeolfJFLF1fZQoaAZoCWgPQwippbkVwlxxQJSGlFKUaBVLzGgWR0CTXs9mHxjKdX2UKGgGaAloD0MI+7K0UzMtcUCUhpRSlGgVS89oFkdAk18ZIUahpXV9lChoBmgJaA9DCO0pOSc2D3JAlIaUUpRoFUvoaBZHQJNfOeVcD8t1fZQoaAZoCWgPQwhfevtz0T5xQJSGlFKUaBVL5GgWR0CTXznmaH9FdX2UKGgGaAloD0MIZ2X7kLdxUECUhpRSlGgVS5xoFkdAk19xMajveHV9lChoBmgJaA9DCPVnP1KE9XFAlIaUUpRoFUvjaBZHQJNf8jcEeQx1fZQoaAZoCWgPQwgXnSy1nu5xQJSGlFKUaBVL/mgWR0CTYB4/u9eydX2UKGgGaAloD0MI/cHAc+/GcECUhpRSlGgVS8RoFkdAk2BQbEP1+XV9lChoBmgJaA9DCB7AIr9+RnBAlIaUUpRoFUvJaBZHQJNgX8hs67x1fZQoaAZoCWgPQwgmVHB4ARdwQJSGlFKUaBVLvGgWR0CTYKmEGqxUdX2UKGgGaAloD0MIlBYuq7DCb0CUhpRSlGgVS6doFkdAk2Hi2tuDSXV9lChoBmgJaA9DCFgczvzqPHFAlIaUUpRoFUuwaBZHQJNh/HR1HON1fZQoaAZoCWgPQwjg2omSkGxyQJSGlFKUaBVL+WgWR0CTYqJXyRSxdX2UKGgGaAloD0MIhPBo48jicUCUhpRSlGgVS8BoFkdAk2Ln+l0o0HV9lChoBmgJaA9DCKfJjLeVlnBAlIaUUpRoFUu5aBZHQJNjIljVhCt1fZQoaAZoCWgPQwgK9fQRePNxQJSGlFKUaBVLymgWR0CTYzz4UN8WdX2UKGgGaAloD0MILLr1mp7QcUCUhpRSlGgVS+VoFkdAk2Nctf5ULnV9lChoBmgJaA9DCLHCLR+J/XBAlIaUUpRoFUvhaBZHQJNjsroW56N1fZQoaAZoCWgPQwjmWx/WWztxQJSGlFKUaBVLx2gWR0CTZCBMBZIQdX2UKGgGaAloD0MIroIY6BqScUCUhpRSlGgVS9RoFkdAk2Q1zMibD3V9lChoBmgJaA9DCLK7QElBbHFAlIaUUpRoFUvlaBZHQJNlCL4vexh1fZQoaAZoCWgPQwgRbjKqDAFxQJSGlFKUaBVLoGgWR0CTZTCuEEkjdX2UKGgGaAloD0MIbcZpiCq3cECUhpRSlGgVS+FoFkdAk2VEIw/PgXV9lChoBmgJaA9DCCHlJ9U+pnJAlIaUUpRoFUv7aBZHQJNlagXdj5N1fZQoaAZoCWgPQwjwp8ZLt7xwQJSGlFKUaBVLqWgWR0CTZXRDTjNqdX2UKGgGaAloD0MIsTGvI85JcECUhpRSlGgVS7NoFkdAk2a32ZiNKnV9lChoBmgJaA9DCD/9Z83PSnFAlIaUUpRoFUu5aBZHQJNm8jfNzKd1fZQoaAZoCWgPQwjQ1OsWAYduQJSGlFKUaBVLv2gWR0CTZzK6WgOCdX2UKGgGaAloD0MI8djPYqkGckCUhpRSlGgVS9xoFkdAk2dXl8w6AHV9lChoBmgJaA9DCPFJJxLMvm9AlIaUUpRoFUugaBZHQJNncTDfm9x1fZQoaAZoCWgPQwhF8pVAylpvQJSGlFKUaBVLyGgWR0CTZ7je9Ba+dX2UKGgGaAloD0MIuf5dn7nVcUCUhpRSlGgVTQ4BaBZHQJNoFxQzk6t1fZQoaAZoCWgPQwhblq/L8P1wQJSGlFKUaBVLs2gWR0CTaQ7jDKoydX2UKGgGaAloD0MItK1mnXHYcECUhpRSlGgVS8doFkdAk2kVB+nZTXV9lChoBmgJaA9DCBeBsb4BHHFAlIaUUpRoFUv2aBZHQJNpKYNRWLh1fZQoaAZoCWgPQwiDUN7HkTpxQJSGlFKUaBVLzWgWR0CTaWsMiKR/dX2UKGgGaAloD0MIfVwbKoYIc0CUhpRSlGgVS9loFkdAk2mWDg62fHV9lChoBmgJaA9DCHr9SXyuSHFAlIaUUpRoFUvaaBZHQJNp38iwB5p1fZQoaAZoCWgPQwhLrmLxm3JnQJSGlFKUaBVN6ANoFkdAk2o1zhgmZ3V9lChoBmgJaA9DCKD6B5EM+HBAlIaUUpRoFUu8aBZHQJNrKYNRWLh1fZQoaAZoCWgPQwgg8SvWcJZyQJSGlFKUaBVLyGgWR0CTa0UornTzdX2UKGgGaAloD0MIpfYi2g7IbkCUhpRSlGgVS8BoFkdAk2taqbSZ0HV9lChoBmgJaA9DCFkWTPyRoXBAlIaUUpRoFUvqaBZHQJNrfHU+cH51fZQoaAZoCWgPQwhJvhJIiW1vQJSGlFKUaBVLw2gWR0CTa66hQFcIdX2UKGgGaAloD0MIwXPv4VIRdECUhpRSlGgVS+1oFkdAk2vBEORT0nV9lChoBmgJaA9DCLtE9dbAOXFAlIaUUpRoFUvHaBZHQJNsFg4Otnx1fZQoaAZoCWgPQwj8brplx3pxQJSGlFKUaBVLrGgWR0CTbPZP2wmmdX2UKGgGaAloD0MI3IE65dHIbkCUhpRSlGgVS8hoFkdAk21dvKlpGnV9lChoBmgJaA9DCEbsE0DxqHBAlIaUUpRoFUvdaBZHQJNtcTDfm9x1fZQoaAZoCWgPQwiSIjKsIrdwQJSGlFKUaBVL4WgWR0CTbYGTLW7OdX2UKGgGaAloD0MIvLA1Wzl0cECUhpRSlGgVS+ZoFkdAk22yuuA7P3V9lChoBmgJaA9DCN+/eXHipW9AlIaUUpRoFUvCaBZHQJNuBayKNyZ1fZQoaAZoCWgPQwjGT+Pe/I9iQJSGlFKUaBVN6ANoFkdAk24eP/7zkXV9lChoBmgJaA9DCIM1zqaj53BAlIaUUpRoFUvJaBZHQJNvNcyFfzB1fZQoaAZoCWgPQwirWz0nPbdvQJSGlFKUaBVLxWgWR0CTb1mkWRA9dX2UKGgGaAloD0MIM1TFVHr2cECUhpRSlGgVS9FoFkdAk291SXMQmXV9lChoBmgJaA9DCEIIyJfQ/XBAlIaUUpRoFUvKaBZHQJNwHj81n/V1fZQoaAZoCWgPQwgg1EUK5UtzQJSGlFKUaBVL8mgWR0CTcH6BRQ7+dX2UKGgGaAloD0MIF2U2yCROcUCUhpRSlGgVS6ZoFkdAk3DYna37UHV9lChoBmgJaA9DCJxqLcwCp3BAlIaUUpRoFUuyaBZHQJNxKojv/ip1fZQoaAZoCWgPQwgdW88QDsdmQJSGlFKUaBVN6ANoFkdAk3FMU/OdG3V9lChoBmgJaA9DCNl22hpR8nFAlIaUUpRoFUvqaBZHQJNxyUFB6a91fZQoaAZoCWgPQwgWTWcng5lwQJSGlFKUaBVLumgWR0CTceb0OEuhdX2UKGgGaAloD0MIfv/mxYnacECUhpRSlGgVS81oFkdAk3HzPa+N+HV9lChoBmgJaA9DCKNAn8jTtnJAlIaUUpRoFUvhaBZHQJNyApnYg7p1fZQoaAZoCWgPQwj/PA0YZFpwQJSGlFKUaBVL7GgWR0CTcwi++M6zdX2UKGgGaAloD0MIYeKPog74cECUhpRSlGgVTWsBaBZHQJNzKH31zyV1fZQoaAZoCWgPQwgleEMaVVZxQJSGlFKUaBVLuWgWR0CTc0MdcSoPdX2UKGgGaAloD0MIUOPe/EZzcUCUhpRSlGgVTfABaBZHQJNz6wwCbMJ1fZQoaAZoCWgPQwiDoQ4r3ClzQJSGlFKUaBVL6GgWR0CTdBH1e0HAdX2UKGgGaAloD0MIdSDrqVW5cUCUhpRSlGgVS75oFkdAk3QeP3i71HV9lChoBmgJaA9DCKJhMeraI3BAlIaUUpRoFUutaBZHQJN0IlfJFLF1fZQoaAZoCWgPQwiU+UffpC1wQJSGlFKUaBVLuGgWR0CTdRYOUdJbdX2UKGgGaAloD0MICvZf5yarcUCUhpRSlGgVS9VoFkdAk3WQ71ZkkXV9lChoBmgJaA9DCJzDtdpDU29AlIaUUpRoFUu2aBZHQJN1sbR4QjF1fZQoaAZoCWgPQwiwjuOHSiFxQJSGlFKUaBVL02gWR0CTdiqI7/4qdX2UKGgGaAloD0MIuYlamtsVcECUhpRSlGgVS99oFkdAk3aO49X9znV9lChoBmgJaA9DCI1jJHvENXJAlIaUUpRoFUu6aBZHQJN29lDneSB1fZQoaAZoCWgPQwjtSPWdH1RwQJSGlFKUaBVLsGgWR0CTdvtvXK8tdX2UKGgGaAloD0MILJs5JLVWR0CUhpRSlGgVS5loFkdAk3daqfe1r3V9lChoBmgJaA9DCE/JObHHo3BAlIaUUpRoFUvjaBZHQJN3+28Zk091fZQoaAZoCWgPQwiztFNzeWdzQJSGlFKUaBVLuGgWR0CTeBL74zrNdX2UKGgGaAloD0MI+5XOh2d0cUCUhpRSlGgVS+BoFkdAk3j+gQHzH3V9lChoBmgJaA9DCNS7eD9uXHJAlIaUUpRoFUv2aBZHQJN5Ri8WbgF1fZQoaAZoCWgPQwhEatrFtONvQJSGlFKUaBVLxmgWR0CTeXVJtix3dX2UKGgGaAloD0MIwhIPKBsZb0CUhpRSlGgVS65oFkdAk3pvJV81GnV9lChoBmgJaA9DCCTRyyhWYnFAlIaUUpRoFUvcaBZHQJN6mSEDhcZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVjgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF5DOlxVc2Vyc1xEYW5peVxBbmFjb25kYTNcZW52c1x0ZW5zb3JmbG93MjVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.4221326886125, "std_reward": 20.09692413052029, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T00:43:24.387838"}