ppo-LunarLander-v2 / config.json
Dardare's picture
Upload PPO LunarLander-v2 trained agent
9d430eb
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e7b3a1a3640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e7b3a1a36d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e7b3a1a3760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e7b3a1a37f0>", "_build": "<function ActorCriticPolicy._build at 0x7e7b3a1a3880>", "forward": "<function ActorCriticPolicy.forward at 0x7e7b3a1a3910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e7b3a1a39a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e7b3a1a3a30>", "_predict": "<function ActorCriticPolicy._predict at 0x7e7b3a1a3ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e7b3a1a3b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e7b3a1a3be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e7b3a1a3c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7b3a1a54c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695648503039348122, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIbNSz5WyJA+xol+vmAaOr7fbY08yyV+vQAAAAAAAAAAzcCsPHkh1j6NL1a9D/BNvpgEVrtAJKC7AAAAAAAAAACzcbS9KMKwPqrDqz3vMR2+mXTnO3K7jr0AAAAAAAAAAJqZiLkUVoS6QH96OdeDgjTgPQc7lt2RuAAAgD8AAIA/zXuwvMN5KLoqyRq4JKA+s1VaijpiZDc3AACAPwAAgD8zIGe9FACPusaosrpN9fO15UmDOm4BzzkAAIA/AACAPzO54jw2ggW8ahNEvSY+Rbwqzuc7DueDPAAAgD8AAIA/ZvgKPRQkhrpRZiu5okkItFbH1TpMQEc4AACAPwAAgD/A1KK97HnTucAq6jbPvC0yQOxMO8XiB7YAAAAAAACAPxO7Q74Yc6Y+SLFSPg1Rh77AUjQ6CMouPQAAAAAAAAAAZnRFvLgu57mlE5I5VbmWs9f+9LoEIqy4AACAPwAAgD/NhmS8FMSvupAzcLlAaGu0BNTUOVtJiTgAAIA/AACAP81nmryuTa66Gj/Su0kaAjiR/Fe6os8NtwAAgD8AAIA/5iEfPeHGirpVs0E1pN2JMCO0+jq+CVO0AACAPwAAgD/AO9u9ehqKPpjDY7ttbii+mNsEvRgPcbwAAAAAAAAAABqBtr0UcJe6zX/pOtP3yzVDiMo6qcsGugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUz4CIUJv6MAWyUTegDjAF0lEdAqYEZq0tyxXV9lChoBkdAZSDGvOhTO2gHTegDaAhHQKmBG6VdHDt1fZQoaAZHQGaC1M23rlhoB03oA2gIR0CpgbfZElVtdX2UKGgGR0Bjkap97WupaAdN6ANoCEdAqYN0lVtGeHV9lChoBkdAbTXSBK+SKWgHTeUDaAhHQKmE1T2nKnx1fZQoaAZHQGH12rfcesBoB03oA2gIR0Cpik1mBe5XdX2UKGgGR0BnqsRradtmaAdN6ANoCEdAqYwRRCQcP3V9lChoBkdAY/0dyT6i02gHTegDaAhHQKmMEgHu7Yl1fZQoaAZHQGYEEGqxTsJoB03oA2gIR0CpjIhOP/70dX2UKGgGR0Bg8PbCaZx8aAdN6ANoCEdAqYy/cvduYXV9lChoBkdAY/etV7x/eGgHTegDaAhHQKmNNBdld1N1fZQoaAZHQGFdb3oLXtloB03oA2gIR0CpmquAI6bOdX2UKGgGR0BmLiU9pyp8aAdN6ANoCEdAqZs1xMnJDHV9lChoBkdAY2togV45cWgHTegDaAhHQKmoAJhOP/91fZQoaAZHQGQBpD/lyR1oB03oA2gIR0Cpqu92gWaddX2UKGgGR0Bjkb7XQMQVaAdN6ANoCEdAqaz8BhhH9XV9lChoBkdAY8gJJGvwE2gHTegDaAhHQKmtFA5aNdZ1fZQoaAZHQGQq+5e7cwhoB03oA2gIR0CprRU/GEPEdX2UKGgGR0BZUVJg9eQdaAdN6ANoCEdAqa2OLrHEM3V9lChoBkdAZPnjaPCEYmgHTegDaAhHQKmu1mZE2Hd1fZQoaAZHQGVsXMINVipoB03oA2gIR0Cpr9SmygPFdX2UKGgGR0Bh0JzvJA+qaAdN6ANoCEdAqbOkAPuognV9lChoBkdAYc3rSmZVn2gHTegDaAhHQKm1DeFcpsp1fZQoaAZHQGMcFTNt65ZoB03oA2gIR0CptQ5ZB9kSdX2UKGgGR0Bhw0JBw++uaAdN6ANoCEdAqbV1aEBbOnV9lChoBkdAYBApbUwztWgHTegDaAhHQKm1qiml67d1fZQoaAZHQGOOxZU1hstoB03oA2gIR0CpthPppvgndX2UKGgGR0BmaDPnjhkzaAdN6ANoCEdAqcUuA08/2XV9lChoBkdAYjmxQizLOmgHTegDaAhHQKnF5P/JeVt1fZQoaAZHQFEesnRb8m9oB0v2aAhHQKnOAjNY8uB1fZQoaAZHQGO40Z3s5XFoB03oA2gIR0Cp0P5oPCl8dX2UKGgGR0BnRQM2FWXDaAdN6ANoCEdAqdMsYZVGTnV9lChoBkdAYb8yPdVNpWgHTegDaAhHQKnVK6wt8NR1fZQoaAZHQGJJXMhX8wZoB03oA2gIR0Cp1UKwY+B6dX2UKGgGR0Bq0xHqeK8+aAdN6ANoCEdAqdVDFn7HhnV9lChoBkdAXHWg7HQyAWgHTegDaAhHQKnVqQAdXDF1fZQoaAZHQGce7u2JBPdoB03oA2gIR0Cp1szF+/g0dX2UKGgGR0BjK/UKArhBaAdN6ANoCEdAqde65mRNh3V9lChoBkdAYpd1zQu27WgHTegDaAhHQKnbRZpSJj51fZQoaAZHQGgVN5D7ZWdoB03oA2gIR0Cp3L9d/rjYdX2UKGgGR0Bn7IX40uUVaAdN6ANoCEdAqdzAkX1rZnV9lChoBkdAZPoYVIqb0GgHTegDaAhHQKndTKKYRd11fZQoaAZHQGI0BHbypaRoB03oA2gIR0Cp3ZGvGIbgdX2UKGgGR0Bk5m/Dcdo4aAdN6ANoCEdAqd4gavRqoXV9lChoBkdATE7DuSfUWmgHTQQBaAhHQKneyMuOCGx1fZQoaAZHQGGw9iMHbAVoB03oA2gIR0Cp7gyNwR5DdX2UKGgGR0BGftwJgLJCaAdL+mgIR0Cp7nuOjqOcdX2UKGgGR0BQ761w5vLpaAdL2WgIR0Cp7tvDpC8fdX2UKGgGR0Bcvptzjm0WaAdN6ANoCEdAqfSJIxxku3V9lChoBkdAZPw7/XGwR2gHTegDaAhHQKn3Phjvuw51fZQoaAZHQGMc5KWcBltoB03oA2gIR0Cp+WG+9Jz1dX2UKGgGR0Bi2aunuRcNaAdN6ANoCEdAqftgOlO45XV9lChoBkdAZShtYSxqwmgHTegDaAhHQKn7fzg/C691fZQoaAZHQGLWtT1kDp1oB03oA2gIR0Cp+4Dl5nlGdX2UKGgGR0BjlhqREF4caAdN6ANoCEdAqfwlJWeYlnV9lChoBkdARY1C/oJRfmgHTRcBaAhHQKn9t6JIlMR1fZQoaAZHQGZY98Aq/dtoB03oA2gIR0Cp/eVsk6cRdX2UKGgGR0BdxJ04iosJaAdN6ANoCEdAqgTsqe9SM3V9lChoBkdAZtKL1mJ3xGgHTegDaAhHQKoGuG8Empl1fZQoaAZHQGdV/779AHFoB03oA2gIR0CqBrji4rjHdX2UKGgGR0Bi1j0rbxmTaAdN6ANoCEdAqgdc6zVtoHV9lChoBkdAZRyYDTz/ZWgHTegDaAhHQKoH28Tzund1fZQoaAZHQC7AsunMt9RoB0v6aAhHQKoUcYpDu0F1fZQoaAZHQGZ7wJ5VwP1oB03oA2gIR0CqFdYRdyDJdX2UKGgGR0BllKP+4smOaAdN6ANoCEdAqhZNJHy3C3V9lChoBkdAaPfzgdfb9WgHTegDaAhHQKoWqH8jzI51fZQoaAZHQHARLngYP5JoB01cAmgIR0CqFzF7Uoa2dX2UKGgGR0ByKGqWC2+gaAdNMgFoCEdAqh184FRpDnV9lChoBkdAcPPZH/cWTGgHTYMDaAhHQKoeYPpY9xJ1fZQoaAZHQGLkE384xUNoB03oA2gIR0CqH71Oj7AMdX2UKGgGR0BqudyNn5BUaAdN2wNoCEdAqiR6GQCCBnV9lChoBkdAZLKlXzUZvWgHTegDaAhHQKok4I/JNj91fZQoaAZHQF4is7MgU11oB03oA2gIR0CqJWUr08NhdX2UKGgGR0BiCuIdlum8aAdN6ANoCEdAqiaGkDZDiXV9lChoBkdAZnEdIXj2jGgHTegDaAhHQKomqUiY9gZ1fZQoaAZHQGGKJ7b+Lm9oB03oA2gIR0CqLUUd7v5QdX2UKGgGR0Bl7VtVJcxCaAdN6ANoCEdAqi1FinYQKHV9lChoBkdAZtr3cHnln2gHTegDaAhHQKot7ZuAI6d1fZQoaAZHQGL67yxzJZJoB03oA2gIR0CqLm63I+4cdX2UKGgGR0Bir2QMhHLBaAdN6ANoCEdAqj3i5LAYYXV9lChoBkdAb95e8f3evmgHTTUCaAhHQKo947wKBup1fZQoaAZHQF4Y/X5FgD1oB03oA2gIR0CqPpXiiqQzdX2UKGgGR0BkuVt0mtyQaAdN6ANoCEdAqj8ivX9R8HV9lChoBkdAZHjJxNqQBGgHTegDaAhHQKo/6buMMql1fZQoaAZHQGrofFrEcbRoB01AAmgIR0CqQRDVH4GmdX2UKGgGR0BerOFpPAO8aAdN6ANoCEdAqkZm2Zy+6HV9lChoBkdAZETu76Hj62gHTegDaAhHQKpHCjcmBvt1fZQoaAZHQGQ4EBKcurZoB03oA2gIR0CqR/XfIjnndX2UKGgGR0Bjsxwn6VMVaAdN6ANoCEdAqkuVBppN9HV9lChoBkdAYIQWnCO3lWgHTegDaAhHQKpMIXpnpSt1fZQoaAZHQGZF9RR/EwZoB03oA2gIR0CqTWv7WNFSdX2UKGgGR0As3E3sHB1taAdL+WgIR0CqTdSVObiIdX2UKGgGR0ButjVFx4puaAdNKAFoCEdAqk5tPJq7AnV9lChoBkdAbva8uBczImgHTQYDaAhHQKpOwn5SFXd1fZQoaAZHQG8MhysCDEpoB02oAmgIR0CqUXrSVnmJdX2UKGgGR0BJo1+I/JNkaAdNEAFoCEdAqlLSGnGbTnV9lChoBkdAZFGVQhwEQ2gHTegDaAhHQKpTM9ic5Kh1fZQoaAZHQGFjb3oLXtloB03oA2gIR0CqUzRMWXTmdX2UKGgGR0BwgbijtXxOaAdNoQJoCEdAqlNSj+Jgs3V9lChoBkdAZwM26TW5H2gHTegDaAhHQKpTt2alUId1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}