ppo-LunarLander-custom / config.json
Darisian's picture
Upload PPO LunarLander-v2 trained agent
b95d1a6
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be9f31a0280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be9f31a0310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be9f31a03a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be9f31a0430>", "_build": "<function ActorCriticPolicy._build at 0x7be9f31a04c0>", "forward": "<function ActorCriticPolicy.forward at 0x7be9f31a0550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be9f31a05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be9f31a0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7be9f31a0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be9f31a0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be9f31a0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be9f31a08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bea56c3f600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689858984424653746, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCjAb9anCk/KcOWPpPqZb5afaQ9qXsUPgAAAAAAAAAAQG6vvZQDHj9aiGI93UxmvmQk7TtQ2YM8AAAAAAAAAABNguS9KaAouqXR1bqJNw62plk9OlJH8zkAAIA/AAAAALMHID5xMDq76j61PGenhzyGmJi8TShqPQAAgD8AAIA/Ol8HPtfLVzr5wwy86iTJudmlbTxyvrq6AACAPwAAgD/tqYA+w9cqvIUcarztM9o5opuRvZoOwDoAAIA/AACAPybqHL55WUI/IvVnPRafZr6o4no8EsCyOwAAAAAAAAAAwBrEPoohAjwIziY83PUSupBdL73VX327AACAPwAAgD8d94m+I0EIPw1N+z2suc29lLa3vHrMKD0AAAAAAAAAAG3TR77TrG4/raB+vqKuj753GSq+eiHBOwAAAAAAAAAAejKCPsVxnTyBsBm8ZP8SupZBKT6uRRK7AACAPwAAgD8gBBS+hXm9P21jKL8ZLj2+PddDvvCKzb0AAAAAAAAAAADSHryPdn66c4DNN0OsNTMGZUE71pzstgAAgD8AAIA/ADz1PX9nMj4xypU7iQbuvRYf2Ttxix68AAAAAAAAAACCEhQ/nBF1vDh7TDwwOzO6r5QXvYRTnrsAAIA/AACAP/7Ghb7Xag6785nkO05O0zdao1A8mi2+uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQAAU7KaG5+aMAWyUTYsBjAF0lEdAiyPWlEZzgnV9lChoBkdAYxs4SYgJTmgHTegDaAhHQIsoqTyJ9Ap1fZQoaAZHwDKNsenyd4FoB0vIaAhHQIstXpD/lyR1fZQoaAZHQFyPHymQ8wJoB03oA2gIR0CLL2AQQL/kdX2UKGgGR8BAyIaDPGADaAdLwmgIR0CLMIYNy5qedX2UKGgGR8AxoGjbi6xxaAdLn2gIR0CLPgr08NhFdX2UKGgGR0BTQDcdo372aAdN6ANoCEdAiz8utwJgLXV9lChoBkdAX6OzIFNcnmgHTegDaAhHQItFx40Mw111fZQoaAZHQF/OFxn3+MtoB03oA2gIR0CLRr7+kxh2dX2UKGgGR0BXZrxusLfDaAdN6ANoCEdAi1F4Oc2BKHV9lChoBkdAZnCgsbvPT2gHTegDaAhHQItXeAoXsPd1fZQoaAZHQGRQRTsIE8toB03oA2gIR0CLWBWnTAnEdX2UKGgGR0BlnPxSYPXkaAdNegJoCEdAi14WNWEK3XV9lChoBkdAV2rh2nsLOWgHTegDaAhHQIuKqClJpWV1fZQoaAZHwCe/ZuhsZYRoB0vQaAhHQIunLu0CzTp1fZQoaAZHQGRYTuv2XcBoB03oA2gIR0CLqeKtPpIMdX2UKGgGR0BY9+iSJTESaAdN6ANoCEdAi79uQQtjC3V9lChoBkdAYVuT8pCrtGgHTegDaAhHQIvEG2b5M111fZQoaAZHQGPE8Udq+JxoB03oA2gIR0CLyb5qM3qBdX2UKGgGR0Bm6XW4EwFlaAdN6ANoCEdAi9ALC3w1BXV9lChoBkdAWS9DPWxyGWgHTegDaAhHQIvYfpljEvV1fZQoaAZHQFpagdfb9IhoB03oA2gIR0CL2fCiyprDdX2UKGgGR8BFfuZ1FH8TaAdLlGgIR0CL3TMC9ytFdX2UKGgGR0BkEWXw9aEBaAdN6ANoCEdAi+uZg5R0l3V9lChoBkdAZCveaa1CxGgHTegDaAhHQIvtCA+Y+jd1fZQoaAZHQGSwCW3Sa3JoB03oA2gIR0CL9J1dxAB1dX2UKGgGR0BiG45FPSDzaAdN6ANoCEdAi/WquSwGGHV9lChoBkfALoLf1pTMq2gHTUYBaAhHQIv79xIatLd1fZQoaAZHwEKMxZdOZb9oB0vxaAhHQIv+EjAzpHJ1fZQoaAZHwEZ5QZXMhX9oB0uFaAhHQIv+1sFdLQJ1fZQoaAZHQFitKr7wazhoB03oA2gIR0CMAXQw9JSSdX2UKGgGR0Betd9c8kleaAdN6ANoCEdAjAaWkadc0XV9lChoBkdAYkiJOWSlnGgHTegDaAhHQIwHBowmE5B1fZQoaAZHQFx7HkLhJiBoB03oA2gIR0CMCzMHKOktdX2UKGgGR8BCRMHjZL7GaAdLhGgIR0CMC988cMmXdX2UKGgGR8BA4oVM23rlaAdNLAFoCEdAjDt2oWHk93V9lChoBkfASqil54W1t2gHS5VoCEdAjD+VL8Jla3V9lChoBkfAQH7XpW3jMmgHTTcBaAhHQIxFr1yvLYB1fZQoaAZHQF1uNmDlHSZoB03oA2gIR0CMUC5z5oGqdX2UKGgGR0BizoJqqOtGaAdN6ANoCEdAjFKHSOR1YHV9lChoBkfAUR9osZpBX2gHTYQBaAhHQIxcNgF5fMR1fZQoaAZHQGREukLx7RhoB03oA2gIR0CMYqxvegtfdX2UKGgGR0Bh2lev6j33aAdN6ANoCEdAjGVs+NcW03V9lChoBkfAKx8xbjcVQGgHS2doCEdAjGiZvUBnz3V9lChoBkdAVcp+H8CPqGgHTegDaAhHQIx5IuqWC3B1fZQoaAZHQEioafjCHh1oB0ubaAhHQIx58nZ00WN1fZQoaAZHQGAqREORT0hoB03oA2gIR0CMewNbTtsvdX2UKGgGR8BAUH+Q2dd3aAdNNQFoCEdAjI01pCa7VnV9lChoBkdAWzA2NvOyFGgHTegDaAhHQIyN08PnSv11fZQoaAZHQGBSxD9fkWBoB03oA2gIR0CMlraVUuL8dX2UKGgGR0BiDQNAkcCHaAdNAANoCEdAjJ4b0Fr2x3V9lChoBkdATsS8an7522gHTegDaAhHQIyelyT6i0x1fZQoaAZHQFo0nZ00WM1oB03oA2gIR0CMoY6ZH/cWdX2UKGgGR0BdUPozN2TxaAdN6ANoCEdAjKZhkqc3EXV9lChoBkdAYIqYtxuKoGgHTegDaAhHQIym1TvRZ2Z1fZQoaAZHwD+65c1O0sxoB0uIaAhHQIym2oUBXCF1fZQoaAZHwEcQNEw35vdoB0t6aAhHQIzT3dO6/Zd1fZQoaAZHQExPqC6H0shoB00CAWgIR0CM4CyrxRVIdX2UKGgGR0Bi1Kq6vq1PaAdN6ANoCEdAjOGMsYl6aHV9lChoBkdAYNETnJT2nWgHTegDaAhHQIzpWBtk4FR1fZQoaAZHQGEjrnTy8SRoB03oA2gIR0CM9JzwtrbhdX2UKGgGR0BgMe/Ho5ggaAdN6ANoCEdAjPc27OE/S3V9lChoBkfAKD8brC3w1GgHTa4BaAhHQI0DCoIfKZF1fZQoaAZHQF53WrwOOKhoB03oA2gIR0CNER9Cu2ZzdX2UKGgGR0BofO+/QBxQaAdNrgFoCEdAjRPtShrWRXV9lChoBkdAWbxZGKAJ9mgHTegDaAhHQI0hxgogFHJ1fZQoaAZHQFt/hVENOM5oB03oA2gIR0CNInA0Kqn4dX2UKGgGR0Bb2NBnjABUaAdN6ANoCEdAjSM4DDCP63V9lChoBkdAMQqnm7rcCmgHTTsBaAhHQI0t5iobXH11fZQoaAZHQFW4gLqlgtxoB03oA2gIR0CNM0WdEsredX2UKGgGR0BUhxFd9lVcaAdN6ANoCEdAjTP8qOLiuXV9lChoBkdANmFgx8D0UWgHS79oCEdAjTzAQ6IWQHV9lChoBkfARE6BPKuB+WgHS6ZoCEdAjUh+5e7cwnV9lChoBkdAW1lyZKFqSGgHTegDaAhHQI1KXR5TqB51fZQoaAZHQGFweOGTLW9oB03oA2gIR0CNToP+4smOdX2UKGgGR0BcU3YxtYSyaAdN6ANoCEdAjVTmHHmzSnV9lChoBkfATn8PtlZowmgHS9BoCEdAjWU1KoQ4CXV9lChoBkfAHJPy08eS0WgHTWgBaAhHQI2JCbSZ0CB1fZQoaAZHQGCzdPDYRNBoB03oA2gIR0CNjtrUsnRcdX2UKGgGR0BhGpZU1hsqaAdN6ANoCEdAjY/NOdoWYXV9lChoBkdAYr1si0OVgWgHTegDaAhHQI2XkxO+IuZ1fZQoaAZHwDio/PgNwzdoB02+AWgIR0CNn13WWhRJdX2UKGgGR8A2HOnEVFhHaAdLo2gIR0CNo3xp+MIedX2UKGgGR0BbgF/lQuVYaAdN6ANoCEdAjaZtet0V8HV9lChoBkdAX30f7rLQomgHTegDaAhHQI2on4AS39d1fZQoaAZHwCX6kbgjyFxoB0uEaAhHQI21uZy+6Ah1fZQoaAZHQGWNFFMIu5BoB03oA2gIR0CNvoF7D2rXdX2UKGgGR0BhID2Jzkp7aAdN6ANoCEdAjcEPAXVLBnV9lChoBkdAWl70g8r7O2gHTegDaAhHQI3PdSGahHt1fZQoaAZHQFTvHc1wYLtoB03oA2gIR0CN0D6l+EytdX2UKGgGR0BkPGGATZg5aAdN6ANoCEdAjeERGDtgKHV9lChoBkfAUELP0I1LrWgHS/xoCEdAjeJGthd+onV9lChoBkdALIWNvOyE+WgHTXQBaAhHQI3mnm7rcCZ1fZQoaAZHQGcIyIP9UCJoB03oA2gIR0CN8rkiliz+dX2UKGgGR0BfeYBFNL13aAdN6ANoCEdAjffhIWgvlHV9lChoBkfAaVikadc0L2gHS6ZoCEdAjfh47aIvanV9lChoBkdAWZUCSzPa+WgHTegDaAhHQI4AIqCpWFN1fZQoaAZHQGuDiVSn+AFoB01MA2gIR0COBSw/PgNxdX2UKGgGR0A1jEXtShrWaAdNGQFoCEdAjgsi+De0onV9lChoBkdAYK6DYAbQ1WgHTegDaAhHQI4P00xdpqR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}