DarkAirforce
commited on
Commit
·
a8c3ab4
1
Parent(s):
4ffbb6e
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.74 +/- 0.52
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03dbc27e6cd679d6f3e4a2a0af8d6b55fd5081b4a992d89e5259c668691d6819
|
3 |
+
size 108046
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"observation_space": {
|
67 |
":type:": "<class 'gym.spaces.dict.Dict'>",
|
68 |
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e1406b40670>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e1406b4d6c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1691444448065147592,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWp60PoTYZTyzChE/Wp60PoTYZTyzChE/Wp60PoTYZTyzChE/Wp60PoTYZTyzChE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcfemPwJqmb75en+/382yP4YFsz88pze/kYkAvzSUvr9qkow+n6QRv/NYrbyDfIC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABanrQ+hNhlPLMKET8bKCu8cniXO07+ZbtanrQ+hNhlPLMKET8bKCu8cniXO07+ZbtanrQ+hNhlPLMKET8bKCu8cniXO07+ZbtanrQ+hNhlPLMKET8bKCu8cniXO07+ZbuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.35277063 0.01402867 0.5665695 ]\n [0.35277063 0.01402867 0.5665695 ]\n [0.35277063 0.01402867 0.5665695 ]\n [0.35277063 0.01402867 0.5665695 ]]",
|
38 |
+
"desired_goal": "[[ 1.3044263 -0.2996369 -0.99797016]\n [ 1.3969077 1.3986061 -0.71739554]\n [-0.5020991 -1.4888978 0.27455455]\n [-0.56891817 -0.02116058 -1.0037998 ]]",
|
39 |
+
"observation": "[[ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]\n [ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]\n [ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]\n [ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbF9+PTd72zx4Mzk+rWzavW50Mr0l/MI98X0nPBcgF76Oixk+RdD4vRSllzwM7JQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.06210272 0.02679215 0.1808604 ]\n [-0.1066526 -0.04356807 0.09520749]\n [ 0.0102229 -0.14758335 0.14994642]\n [-0.12149099 0.01851133 0.2908634 ]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHYwYp/ABMCUhpRSlIwBbJRLMowBdJRHQKbKxf9gndB1fZQoaAZoCWgPQwgzjLtBtFYBwJSGlFKUaBVLMmgWR0Cmym0X531SdX2UKGgGaAloD0MIm3PwTGgSBsCUhpRSlGgVSzJoFkdApsoOfXf643V9lChoBmgJaA9DCKp8z0iEhv2/lIaUUpRoFUsyaBZHQKbJyKu0TlF1fZQoaAZoCWgPQwjmyTUFMpsGwJSGlFKUaBVLMmgWR0Cmy+tGus90dX2UKGgGaAloD0MIYOXQItt5/7+UhpRSlGgVSzJoFkdApsuTIV/MGHV9lChoBmgJaA9DCAAd5ssLkADAlIaUUpRoFUsyaBZHQKbLNH2h7E51fZQoaAZoCWgPQwiiJvp8lHECwJSGlFKUaBVLMmgWR0Cmyu5bQkX2dX2UKGgGaAloD0MIUKp9Oh5zAMCUhpRSlGgVSzJoFkdApsz91yNn5HV9lChoBmgJaA9DCPD6zFmfUgLAlIaUUpRoFUsyaBZHQKbMpY8uBc11fZQoaAZoCWgPQwiKWwUx0HUCwJSGlFKUaBVLMmgWR0CmzEbS7Xg+dX2UKGgGaAloD0MIR5OLMbBuAsCUhpRSlGgVSzJoFkdApswA5DJEIHV9lChoBmgJaA9DCHBAS1ewzfa/lIaUUpRoFUsyaBZHQKbOAobXHzZ1fZQoaAZoCWgPQwhYqgt4mYEBwJSGlFKUaBVLMmgWR0CmzanrpqyodX2UKGgGaAloD0MI8wUtJGD0/r+UhpRSlGgVSzJoFkdAps1LGaQV9HV9lChoBmgJaA9DCIhmnlxTQAbAlIaUUpRoFUsyaBZHQKbNBPt2LYR1fZQoaAZoCWgPQwjowHKEDKT+v5SGlFKUaBVLMmgWR0Cmzw6ouPFOdX2UKGgGaAloD0MI9SudD88S/b+UhpRSlGgVSzJoFkdAps61tXPqs3V9lChoBmgJaA9DCDWYhuEjYgPAlIaUUpRoFUsyaBZHQKbOV4REnb91fZQoaAZoCWgPQwi8eapDbuYBwJSGlFKUaBVLMmgWR0CmzhGOdXkpdX2UKGgGaAloD0MIQPomTYPiCsCUhpRSlGgVSzJoFkdAptAYPK+zt3V9lChoBmgJaA9DCFjLnZlgePO/lIaUUpRoFUsyaBZHQKbPv7fHggp1fZQoaAZoCWgPQwiA07t4Py72v5SGlFKUaBVLMmgWR0Cmz2EH2RJVdX2UKGgGaAloD0MIJ6Wg20sa/r+UhpRSlGgVSzJoFkdAps8bMaCL/HV9lChoBmgJaA9DCD7MXrad9gTAlIaUUpRoFUsyaBZHQKbRGZPVNHp1fZQoaAZoCWgPQwhpVyHlJ1X4v5SGlFKUaBVLMmgWR0Cm0MCqyWzGdX2UKGgGaAloD0MI6Po+HCRE/L+UhpRSlGgVSzJoFkdAptBiKm8/U3V9lChoBmgJaA9DCHDvGvSllwPAlIaUUpRoFUsyaBZHQKbQHDNQj2V1fZQoaAZoCWgPQwjZXgt6b4z8v5SGlFKUaBVLMmgWR0Cm0jr876pHdX2UKGgGaAloD0MIvw6cM6J09r+UhpRSlGgVSzJoFkdAptHi6cy31HV9lChoBmgJaA9DCOnRVE/mH/S/lIaUUpRoFUsyaBZHQKbRhCtzS1F1fZQoaAZoCWgPQwjidmhYjLoJwJSGlFKUaBVLMmgWR0Cm0T5qM3qBdX2UKGgGaAloD0MI8KXwoNk1BMCUhpRSlGgVSzJoFkdAptOdRzijtXV9lChoBmgJaA9DCGaDTDJyFgPAlIaUUpRoFUsyaBZHQKbTRMINVip1fZQoaAZoCWgPQwjKN9vcmD4AwJSGlFKUaBVLMmgWR0Cm0uaxX4j9dX2UKGgGaAloD0MIYD5ZMVzd9b+UhpRSlGgVSzJoFkdAptKhemelK3V9lChoBmgJaA9DCDZ1HhX/t/i/lIaUUpRoFUsyaBZHQKbVgjM3ZPF1fZQoaAZoCWgPQwhupkI8Eu/3v5SGlFKUaBVLMmgWR0Cm1SnVG0/odX2UKGgGaAloD0MI/8726A33+7+UhpRSlGgVSzJoFkdAptTLmW+oL3V9lChoBmgJaA9DCH47iQj/Yv6/lIaUUpRoFUsyaBZHQKbUh9Oymhx1fZQoaAZoCWgPQwjtuUxNgvf5v5SGlFKUaBVLMmgWR0Cm1z7F0gbIdX2UKGgGaAloD0MI7rH0oQuq/r+UhpRSlGgVSzJoFkdAptbm3OObRXV9lChoBmgJaA9DCLQglPdxFADAlIaUUpRoFUsyaBZHQKbWiN4JNTN1fZQoaAZoCWgPQwip+Sr52P0CwJSGlFKUaBVLMmgWR0Cm1kPL5h0AdX2UKGgGaAloD0MIhqsDIO7qAsCUhpRSlGgVSzJoFkdAptiJClabF3V9lChoBmgJaA9DCGglrfiGggfAlIaUUpRoFUsyaBZHQKbYMG9pRGd1fZQoaAZoCWgPQwhDxqNUwlP0v5SGlFKUaBVLMmgWR0Cm19G78Nx3dX2UKGgGaAloD0MI7unqjsX297+UhpRSlGgVSzJoFkdApteL1bqyGHV9lChoBmgJaA9DCN7LfXIU4P+/lIaUUpRoFUsyaBZHQKbZhuCwr2B1fZQoaAZoCWgPQwjknq7uWAwAwJSGlFKUaBVLMmgWR0Cm2S4DLbHqdX2UKGgGaAloD0MI2QqalljZ+r+UhpRSlGgVSzJoFkdAptjPYpUgjnV9lChoBmgJaA9DCA0AVdy4JQ3AlIaUUpRoFUsyaBZHQKbYiaDPGAF1fZQoaAZoCWgPQwjcSq/Nxgr8v5SGlFKUaBVLMmgWR0Cm2oyup0fYdX2UKGgGaAloD0MIMevFUE50+L+UhpRSlGgVSzJoFkdApto0BU70WnV9lChoBmgJaA9DCMKKU62F2fu/lIaUUpRoFUsyaBZHQKbZ1V6NVBF1fZQoaAZoCWgPQwg7cM6I0p75v5SGlFKUaBVLMmgWR0Cm2Y+BYmsvdX2UKGgGaAloD0MIc/c5PlocB8CUhpRSlGgVSzJoFkdAptum2oegc3V9lChoBmgJaA9DCIL+Qo8Yvf6/lIaUUpRoFUsyaBZHQKbbTirksBh1fZQoaAZoCWgPQwg1s5YC0h4CwJSGlFKUaBVLMmgWR0Cm2u9UsFt9dX2UKGgGaAloD0MIkZighm8h/r+UhpRSlGgVSzJoFkdAptqpUkv9L3V9lChoBmgJaA9DCO1I9Z1fFP2/lIaUUpRoFUsyaBZHQKbc2K/Efkp1fZQoaAZoCWgPQwgfgqrRqyECwJSGlFKUaBVLMmgWR0Cm3H/+CK77dX2UKGgGaAloD0MIcCTQYFNn9b+UhpRSlGgVSzJoFkdAptwiJ0nw5XV9lChoBmgJaA9DCI4hADj27Pi/lIaUUpRoFUsyaBZHQKbb3E1l5GB1fZQoaAZoCWgPQwgwgzEiUcgCwJSGlFKUaBVLMmgWR0Cm3e/CIk7fdX2UKGgGaAloD0MIXd2x2Ca1A8CUhpRSlGgVSzJoFkdApt2WtGNJe3V9lChoBmgJaA9DCLHdPUD3Jf+/lIaUUpRoFUsyaBZHQKbdN/MGHHp1fZQoaAZoCWgPQwiVYkfjUB8NwJSGlFKUaBVLMmgWR0Cm3PIsiB5HdX2UKGgGaAloD0MI+64I/rdyBsCUhpRSlGgVSzJoFkdApt72FvhqCnV9lChoBmgJaA9DCDzbozfcR/+/lIaUUpRoFUsyaBZHQKbenYwIt191fZQoaAZoCWgPQwgPZD21+ooCwJSGlFKUaBVLMmgWR0Cm3j+o99tudX2UKGgGaAloD0MIzqj5KvlY+r+UhpRSlGgVSzJoFkdApt35ddE9dXV9lChoBmgJaA9DCD5ZMVwdgPS/lIaUUpRoFUsyaBZHQKbgATY/Vy51fZQoaAZoCWgPQwjmrE85Jkv7v5SGlFKUaBVLMmgWR0Cm36hvaURndX2UKGgGaAloD0MIzhq8r8pF/b+UhpRSlGgVSzJoFkdApt9JtxdY4nV9lChoBmgJaA9DCKD5nLtdb/q/lIaUUpRoFUsyaBZHQKbfA7U5MlF1fZQoaAZoCWgPQwicNA2K5mEOwJSGlFKUaBVLMmgWR0Cm4QH1nM+vdX2UKGgGaAloD0MI5Eo9C0LZB8CUhpRSlGgVSzJoFkdApuCpW1c+q3V9lChoBmgJaA9DCP4pVaLs7f2/lIaUUpRoFUsyaBZHQKbgStBfKIV1fZQoaAZoCWgPQwjP29jsSPX9v5SGlFKUaBVLMmgWR0Cm4AUhePaMdX2UKGgGaAloD0MI+dwJ9l8nCMCUhpRSlGgVSzJoFkdApuIUgZCOWHV9lChoBmgJaA9DCEqX/iWpzPi/lIaUUpRoFUsyaBZHQKbhu9Ba9sd1fZQoaAZoCWgPQwgmGTkLe9rxv5SGlFKUaBVLMmgWR0Cm4V09yLhrdX2UKGgGaAloD0MIcsEZ/P2CD8CUhpRSlGgVSzJoFkdApuEXWUbDM3V9lChoBmgJaA9DCOAPP/89+Py/lIaUUpRoFUsyaBZHQKbjG/FBIFx1fZQoaAZoCWgPQwjlRpG1hpLwv5SGlFKUaBVLMmgWR0Cm4sNNi6QOdX2UKGgGaAloD0MIK6G7JM4qAMCUhpRSlGgVSzJoFkdApuJkyJsO5XV9lChoBmgJaA9DCIIf1bDfU/S/lIaUUpRoFUsyaBZHQKbiHt78ejp1fZQoaAZoCWgPQwj/dW7ajJMCwJSGlFKUaBVLMmgWR0Cm5DGl67d0dX2UKGgGaAloD0MIGan3VE579L+UhpRSlGgVSzJoFkdApuPZDArQPnV9lChoBmgJaA9DCJG3XP3YZPS/lIaUUpRoFUsyaBZHQKbjel9jPOZ1fZQoaAZoCWgPQwhEUDV6NaADwJSGlFKUaBVLMmgWR0Cm4zRtHhCMdX2UKGgGaAloD0MIVBuciH7tCcCUhpRSlGgVSzJoFkdApuU4xBVuJnV9lChoBmgJaA9DCAskKH6MWQHAlIaUUpRoFUsyaBZHQKbk4CuloDh1fZQoaAZoCWgPQwjL1Y9N8oMCwJSGlFKUaBVLMmgWR0Cm5IE4vN/wdX2UKGgGaAloD0MIkQn4NZIE9r+UhpRSlGgVSzJoFkdApuQ7coH9nHV9lChoBmgJaA9DCM6N6QlLXAvAlIaUUpRoFUsyaBZHQKbmSVlf7aZ1fZQoaAZoCWgPQwhBZJEm3iEFwJSGlFKUaBVLMmgWR0Cm5fDO9nK5dX2UKGgGaAloD0MIxEKtad7x9b+UhpRSlGgVSzJoFkdApuWSP6sQunV9lChoBmgJaA9DCEImGTkLu/y/lIaUUpRoFUsyaBZHQKblTG96C191ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 50000,
|
66 |
"observation_space": {
|
67 |
":type:": "<class 'gym.spaces.dict.Dict'>",
|
68 |
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a1f68f730ee1d1d458cdefee2ae0e1d46584eead9f6e051de28c26840daf563
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a9513143c268c0514bd6b2b01ff313b79eacdf13c84f7933a7e476a1c9423c2
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7896f8381630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7896f8379a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691438580602842326, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/qXbAPlAupryg9RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABq8lv/T0tr73Kzm//tMKPi642j9BCMQ9c4EOv9YEmj9Rzag/CsJXPnlmtj8fYOO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDypdsA+UC6mvKD1FD92BB48gbcau2CWXDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]\n [ 0.3759053 -0.02028576 0.58187294]]", "desired_goal": "[[-0.6472019 -0.3573376 -0.7233271 ]\n [ 0.13557431 1.7087457 0.09571887]\n [-0.55666274 1.2032726 1.3187658 ]\n [ 0.21070114 1.4250022 -0.44409272]]", "observation": "[[ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]\n [ 0.3759053 -0.02028576 0.58187294 0.00964462 -0.00236079 0.01346359]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAArXhO7llBT7q1jk+iIF9vFriwT266GE+J0bAvda77z32/XE9qdbdPQLklD1xqKM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00688803 0.13027085 0.1814839 ]\n [-0.01547278 0.09467001 0.22061434]\n [-0.0938838 0.11705749 0.05908009]\n [ 0.10831959 0.07270052 0.00499445]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgZNt4A5EGMCUhpRSlIwBbJRLMowBdJRHQKi4Wuez2OB1fZQoaAZoCWgPQwicNXhflesGwJSGlFKUaBVLMmgWR0CouC4LkS26dX2UKGgGaAloD0MIsg+yLJiYC8CUhpRSlGgVSzJoFkdAqLgBgy/KyXV9lChoBmgJaA9DCCrHZHH/IRXAlIaUUpRoFUsyaBZHQKi30tVaOgh1fZQoaAZoCWgPQwh/wAMDCN8MwJSGlFKUaBVLMmgWR0CouU8O09hadX2UKGgGaAloD0MIRQ2mYfjIA8CUhpRSlGgVSzJoFkdAqLkiowVTJnV9lChoBmgJaA9DCB3jioujkgHAlIaUUpRoFUsyaBZHQKi49pwjt5V1fZQoaAZoCWgPQwichxOYTmsLwJSGlFKUaBVLMmgWR0CouMjCgsbvdX2UKGgGaAloD0MIaqM6HchaBcCUhpRSlGgVSzJoFkdAqLo6a9bosHV9lChoBmgJaA9DCJ6VtOIbmhDAlIaUUpRoFUsyaBZHQKi6DYkE9uB1fZQoaAZoCWgPQwgKMCx/vs0RwJSGlFKUaBVLMmgWR0CoueD1PFefdX2UKGgGaAloD0MIfgG9cOeCE8CUhpRSlGgVSzJoFkdAqLmyaNMoMXV9lChoBmgJaA9DCOnvpfCgWRTAlIaUUpRoFUsyaBZHQKi7J2FFlTZ1fZQoaAZoCWgPQwiWJqWg20sQwJSGlFKUaBVLMmgWR0Couvr8rI5pdX2UKGgGaAloD0MIN6YnLPFgDcCUhpRSlGgVSzJoFkdAqLrPGMn7YXV9lChoBmgJaA9DCL7aUZyjPhXAlIaUUpRoFUsyaBZHQKi6oT238XN1fZQoaAZoCWgPQwhWurvOhtwdwJSGlFKUaBVLMmgWR0CovBn1nM+vdX2UKGgGaAloD0MIp5TXSujuC8CUhpRSlGgVSzJoFkdAqLvtK9PDYXV9lChoBmgJaA9DCJdUbTfBFwrAlIaUUpRoFUsyaBZHQKi7wOCoS+R1fZQoaAZoCWgPQwggls0ckuoQwJSGlFKUaBVLMmgWR0Cou5KzzErHdX2UKGgGaAloD0MIgsZMol5wCsCUhpRSlGgVSzJoFkdAqL0OLxZuAXV9lChoBmgJaA9DCJCCp5ArlQ3AlIaUUpRoFUsyaBZHQKi84VbA1vV1fZQoaAZoCWgPQwi86gHzkMkMwJSGlFKUaBVLMmgWR0CovLUjs2NvdX2UKGgGaAloD0MIhpDz/j9OEsCUhpRSlGgVSzJoFkdAqLyG5xzaK3V9lChoBmgJaA9DCM8Qjln2hBDAlIaUUpRoFUsyaBZHQKi+A3kxREZ1fZQoaAZoCWgPQwg1lrA2xs4GwJSGlFKUaBVLMmgWR0CovdaAFxGUdX2UKGgGaAloD0MIZTTyecXzEcCUhpRSlGgVSzJoFkdAqL2qEDhcaHV9lChoBmgJaA9DCKIKf4Y3ywvAlIaUUpRoFUsyaBZHQKi9e9GI9DB1fZQoaAZoCWgPQwhh4o+izmwQwJSGlFKUaBVLMmgWR0Covvi1Z1V6dX2UKGgGaAloD0MIs9MP6iLFDMCUhpRSlGgVSzJoFkdAqL7L3bmEG3V9lChoBmgJaA9DCFXejnBakBLAlIaUUpRoFUsyaBZHQKi+n7iQ1aZ1fZQoaAZoCWgPQwg2r+qsFggRwJSGlFKUaBVLMmgWR0CovnFnAZbZdX2UKGgGaAloD0MIzjeie9bVCcCUhpRSlGgVSzJoFkdAqL/xeJHiFXV9lChoBmgJaA9DCHSzP1BuuxTAlIaUUpRoFUsyaBZHQKi/xGpda+x1fZQoaAZoCWgPQwjmkT8YeJ4SwJSGlFKUaBVLMmgWR0Cov5gwwj+rdX2UKGgGaAloD0MIbCbfbHPDD8CUhpRSlGgVSzJoFkdAqL9pv5xionV9lChoBmgJaA9DCDLIXYQp6hnAlIaUUpRoFUsyaBZHQKjA5Y02tMh1fZQoaAZoCWgPQwjecYqO5BIRwJSGlFKUaBVLMmgWR0CowLjbzshQdX2UKGgGaAloD0MI5E7pYP0fCsCUhpRSlGgVSzJoFkdAqMCMbHZK4HV9lChoBmgJaA9DCIKN69/1ORXAlIaUUpRoFUsyaBZHQKjAXhDPWx11fZQoaAZoCWgPQwiM22gAb8EMwJSGlFKUaBVLMmgWR0Cower08NhFdX2UKGgGaAloD0MIrYTukjirEMCUhpRSlGgVSzJoFkdAqMG+VmjCYXV9lChoBmgJaA9DCPg1kgThChPAlIaUUpRoFUsyaBZHQKjBkdMCcPR1fZQoaAZoCWgPQwhWYwlrY2wJwJSGlFKUaBVLMmgWR0CowWNF8XvZdX2UKGgGaAloD0MIgm+aPjtgD8CUhpRSlGgVSzJoFkdAqMLpeAuqWHV9lChoBmgJaA9DCH0/NV66eRHAlIaUUpRoFUsyaBZHQKjCvHcUM5R1fZQoaAZoCWgPQwj0F3rE6LkPwJSGlFKUaBVLMmgWR0CowpAckt2+dX2UKGgGaAloD0MIQuxMofOaEsCUhpRSlGgVSzJoFkdAqMJhpDeCTXV9lChoBmgJaA9DCG4UWWso1QbAlIaUUpRoFUsyaBZHQKjD9a1TisJ1fZQoaAZoCWgPQwgqVg3C3F4YwJSGlFKUaBVLMmgWR0Cow8jw6QvIdX2UKGgGaAloD0MIPITx07i3C8CUhpRSlGgVSzJoFkdAqMOcfPomonV9lChoBmgJaA9DCNKMRdPZqQ/AlIaUUpRoFUsyaBZHQKjDbiPQv6F1fZQoaAZoCWgPQwgai6azkyEHwJSGlFKUaBVLMmgWR0CoxWEOqebvdX2UKGgGaAloD0MIv9alRugHGMCUhpRSlGgVSzJoFkdAqMU01VHWjHV9lChoBmgJaA9DCHtP5bSnVBPAlIaUUpRoFUsyaBZHQKjFCPhAGB51fZQoaAZoCWgPQwibG9MTlrgSwJSGlFKUaBVLMmgWR0CoxNsK1G9YdX2UKGgGaAloD0MInkMZqmLKD8CUhpRSlGgVSzJoFkdAqMbqHARChXV9lChoBmgJaA9DCFpiZTTyORzAlIaUUpRoFUsyaBZHQKjGvbbDdgx1fZQoaAZoCWgPQwgGf7+YLfkLwJSGlFKUaBVLMmgWR0CoxpHQyAQQdX2UKGgGaAloD0MIYDqt26AWD8CUhpRSlGgVSzJoFkdAqMZkNe+mFnV9lChoBmgJaA9DCLKfxVIkfxbAlIaUUpRoFUsyaBZHQKjIgN8VpK11fZQoaAZoCWgPQwgh6GhVS0oTwJSGlFKUaBVLMmgWR0CoyFRnnMdMdX2UKGgGaAloD0MIZk8Cm3PAEMCUhpRSlGgVSzJoFkdAqMgoomXw9nV9lChoBmgJaA9DCNEF9S1zyh7AlIaUUpRoFUsyaBZHQKjH+vwmVqx1fZQoaAZoCWgPQwhGlPYGXzgKwJSGlFKUaBVLMmgWR0CoyijHOryUdX2UKGgGaAloD0MIDJQUWAATCsCUhpRSlGgVSzJoFkdAqMn8nTiKi3V9lChoBmgJaA9DCCkGSDSBUhDAlIaUUpRoFUsyaBZHQKjJ0Uh3aBZ1fZQoaAZoCWgPQwgn+RG/Yg0CwJSGlFKUaBVLMmgWR0CoyaOgxrSFdX2UKGgGaAloD0MIjQxyF2GqDMCUhpRSlGgVSzJoFkdAqMtsw5/9YXV9lChoBmgJaA9DCAiSdw5laAzAlIaUUpRoFUsyaBZHQKjLP8gIQe51fZQoaAZoCWgPQwiPpnoy/8gMwJSGlFKUaBVLMmgWR0CoyxNCAtnPdX2UKGgGaAloD0MIcEIhAg6BHcCUhpRSlGgVSzJoFkdAqMrkpLEk0XV9lChoBmgJaA9DCMzUJHhD+gXAlIaUUpRoFUsyaBZHQKjMXWxyGSJ1fZQoaAZoCWgPQwiCcAUU6ikKwJSGlFKUaBVLMmgWR0CozDCvxH5KdX2UKGgGaAloD0MIYwrWOJuuB8CUhpRSlGgVSzJoFkdAqMwEFKTSs3V9lChoBmgJaA9DCLyxoDAoQxLAlIaUUpRoFUsyaBZHQKjL1VtGd7R1fZQoaAZoCWgPQwi7D0BqEwcJwJSGlFKUaBVLMmgWR0CozU47aIvbdX2UKGgGaAloD0MImbwBZr7jDMCUhpRSlGgVSzJoFkdAqM0hKnNxEXV9lChoBmgJaA9DCOJ1/YLdMBHAlIaUUpRoFUsyaBZHQKjM9JzT4L11fZQoaAZoCWgPQwinsb0W9B4UwJSGlFKUaBVLMmgWR0CozMYiosI3dX2UKGgGaAloD0MI8IXJVMGIG8CUhpRSlGgVSzJoFkdAqM4/MY/FBXV9lChoBmgJaA9DCNwvn6wY3hDAlIaUUpRoFUsyaBZHQKjOEl9jPOZ1fZQoaAZoCWgPQwjgSQuXVfgJwJSGlFKUaBVLMmgWR0CozeX8wYcedX2UKGgGaAloD0MIUyXK3lJOCcCUhpRSlGgVSzJoFkdAqM23PzFuN3V9lChoBmgJaA9DCPg3aK8+LhHAlIaUUpRoFUsyaBZHQKjPMPsAvL51fZQoaAZoCWgPQwjsZ7EUyXcIwJSGlFKUaBVLMmgWR0CozwQ5eZ5SdX2UKGgGaAloD0MINIXOa+zSFcCUhpRSlGgVSzJoFkdAqM7Xp6hQFnV9lChoBmgJaA9DCMjuAiUFRhjAlIaUUpRoFUsyaBZHQKjOqQV9F4N1fZQoaAZoCWgPQwhUO8PUlsoTwJSGlFKUaBVLMmgWR0Co0CcDr7fpdX2UKGgGaAloD0MIvK5fsBsmGMCUhpRSlGgVSzJoFkdAqM/59Vmz0HV9lChoBmgJaA9DCGqIKvwZPg3AlIaUUpRoFUsyaBZHQKjPzWdVea91fZQoaAZoCWgPQwjrcd9qnZgMwJSGlFKUaBVLMmgWR0Coz58DB/I9dX2UKGgGaAloD0MI+5Y5XRYzBsCUhpRSlGgVSzJoFkdAqNERJmNBGHV9lChoBmgJaA9DCG6nrRHBWA3AlIaUUpRoFUsyaBZHQKjQ5BC2MKl1fZQoaAZoCWgPQwhnnfF9cYkXwJSGlFKUaBVLMmgWR0Co0Ld2xIJ7dX2UKGgGaAloD0MIyvrNxHQhEMCUhpRSlGgVSzJoFkdAqNCIvi97GHV9lChoBmgJaA9DCLR224XmOhHAlIaUUpRoFUsyaBZHQKjSB67/XGx1fZQoaAZoCWgPQwgaNPRPcGEiwJSGlFKUaBVLMmgWR0Co0dqoAGSqdX2UKGgGaAloD0MIK2wGuCA7BcCUhpRSlGgVSzJoFkdAqNGuEM9bHXV9lChoBmgJaA9DCJaS5SSUDhDAlIaUUpRoFUsyaBZHQKjRf8IiTt91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52114, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e1406b40670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1406b4d6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691444448065147592, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWp60PoTYZTyzChE/Wp60PoTYZTyzChE/Wp60PoTYZTyzChE/Wp60PoTYZTyzChE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcfemPwJqmb75en+/382yP4YFsz88pze/kYkAvzSUvr9qkow+n6QRv/NYrbyDfIC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABanrQ+hNhlPLMKET8bKCu8cniXO07+ZbtanrQ+hNhlPLMKET8bKCu8cniXO07+ZbtanrQ+hNhlPLMKET8bKCu8cniXO07+ZbtanrQ+hNhlPLMKET8bKCu8cniXO07+ZbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.35277063 0.01402867 0.5665695 ]\n [0.35277063 0.01402867 0.5665695 ]\n [0.35277063 0.01402867 0.5665695 ]\n [0.35277063 0.01402867 0.5665695 ]]", "desired_goal": "[[ 1.3044263 -0.2996369 -0.99797016]\n [ 1.3969077 1.3986061 -0.71739554]\n [-0.5020991 -1.4888978 0.27455455]\n [-0.56891817 -0.02116058 -1.0037998 ]]", "observation": "[[ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]\n [ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]\n [ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]\n [ 0.35277063 0.01402867 0.5665695 -0.01044657 0.00462251 -0.00350942]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbF9+PTd72zx4Mzk+rWzavW50Mr0l/MI98X0nPBcgF76Oixk+RdD4vRSllzwM7JQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06210272 0.02679215 0.1808604 ]\n [-0.1066526 -0.04356807 0.09520749]\n [ 0.0102229 -0.14758335 0.14994642]\n [-0.12149099 0.01851133 0.2908634 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHYwYp/ABMCUhpRSlIwBbJRLMowBdJRHQKbKxf9gndB1fZQoaAZoCWgPQwgzjLtBtFYBwJSGlFKUaBVLMmgWR0Cmym0X531SdX2UKGgGaAloD0MIm3PwTGgSBsCUhpRSlGgVSzJoFkdApsoOfXf643V9lChoBmgJaA9DCKp8z0iEhv2/lIaUUpRoFUsyaBZHQKbJyKu0TlF1fZQoaAZoCWgPQwjmyTUFMpsGwJSGlFKUaBVLMmgWR0Cmy+tGus90dX2UKGgGaAloD0MIYOXQItt5/7+UhpRSlGgVSzJoFkdApsuTIV/MGHV9lChoBmgJaA9DCAAd5ssLkADAlIaUUpRoFUsyaBZHQKbLNH2h7E51fZQoaAZoCWgPQwiiJvp8lHECwJSGlFKUaBVLMmgWR0Cmyu5bQkX2dX2UKGgGaAloD0MIUKp9Oh5zAMCUhpRSlGgVSzJoFkdApsz91yNn5HV9lChoBmgJaA9DCPD6zFmfUgLAlIaUUpRoFUsyaBZHQKbMpY8uBc11fZQoaAZoCWgPQwiKWwUx0HUCwJSGlFKUaBVLMmgWR0CmzEbS7Xg+dX2UKGgGaAloD0MIR5OLMbBuAsCUhpRSlGgVSzJoFkdApswA5DJEIHV9lChoBmgJaA9DCHBAS1ewzfa/lIaUUpRoFUsyaBZHQKbOAobXHzZ1fZQoaAZoCWgPQwhYqgt4mYEBwJSGlFKUaBVLMmgWR0CmzanrpqyodX2UKGgGaAloD0MI8wUtJGD0/r+UhpRSlGgVSzJoFkdAps1LGaQV9HV9lChoBmgJaA9DCIhmnlxTQAbAlIaUUpRoFUsyaBZHQKbNBPt2LYR1fZQoaAZoCWgPQwjowHKEDKT+v5SGlFKUaBVLMmgWR0Cmzw6ouPFOdX2UKGgGaAloD0MI9SudD88S/b+UhpRSlGgVSzJoFkdAps61tXPqs3V9lChoBmgJaA9DCDWYhuEjYgPAlIaUUpRoFUsyaBZHQKbOV4REnb91fZQoaAZoCWgPQwi8eapDbuYBwJSGlFKUaBVLMmgWR0CmzhGOdXkpdX2UKGgGaAloD0MIQPomTYPiCsCUhpRSlGgVSzJoFkdAptAYPK+zt3V9lChoBmgJaA9DCFjLnZlgePO/lIaUUpRoFUsyaBZHQKbPv7fHggp1fZQoaAZoCWgPQwiA07t4Py72v5SGlFKUaBVLMmgWR0Cmz2EH2RJVdX2UKGgGaAloD0MIJ6Wg20sa/r+UhpRSlGgVSzJoFkdAps8bMaCL/HV9lChoBmgJaA9DCD7MXrad9gTAlIaUUpRoFUsyaBZHQKbRGZPVNHp1fZQoaAZoCWgPQwhpVyHlJ1X4v5SGlFKUaBVLMmgWR0Cm0MCqyWzGdX2UKGgGaAloD0MI6Po+HCRE/L+UhpRSlGgVSzJoFkdAptBiKm8/U3V9lChoBmgJaA9DCHDvGvSllwPAlIaUUpRoFUsyaBZHQKbQHDNQj2V1fZQoaAZoCWgPQwjZXgt6b4z8v5SGlFKUaBVLMmgWR0Cm0jr876pHdX2UKGgGaAloD0MIvw6cM6J09r+UhpRSlGgVSzJoFkdAptHi6cy31HV9lChoBmgJaA9DCOnRVE/mH/S/lIaUUpRoFUsyaBZHQKbRhCtzS1F1fZQoaAZoCWgPQwjidmhYjLoJwJSGlFKUaBVLMmgWR0Cm0T5qM3qBdX2UKGgGaAloD0MI8KXwoNk1BMCUhpRSlGgVSzJoFkdAptOdRzijtXV9lChoBmgJaA9DCGaDTDJyFgPAlIaUUpRoFUsyaBZHQKbTRMINVip1fZQoaAZoCWgPQwjKN9vcmD4AwJSGlFKUaBVLMmgWR0Cm0uaxX4j9dX2UKGgGaAloD0MIYD5ZMVzd9b+UhpRSlGgVSzJoFkdAptKhemelK3V9lChoBmgJaA9DCDZ1HhX/t/i/lIaUUpRoFUsyaBZHQKbVgjM3ZPF1fZQoaAZoCWgPQwhupkI8Eu/3v5SGlFKUaBVLMmgWR0Cm1SnVG0/odX2UKGgGaAloD0MI/8726A33+7+UhpRSlGgVSzJoFkdAptTLmW+oL3V9lChoBmgJaA9DCH47iQj/Yv6/lIaUUpRoFUsyaBZHQKbUh9Oymhx1fZQoaAZoCWgPQwjtuUxNgvf5v5SGlFKUaBVLMmgWR0Cm1z7F0gbIdX2UKGgGaAloD0MI7rH0oQuq/r+UhpRSlGgVSzJoFkdAptbm3OObRXV9lChoBmgJaA9DCLQglPdxFADAlIaUUpRoFUsyaBZHQKbWiN4JNTN1fZQoaAZoCWgPQwip+Sr52P0CwJSGlFKUaBVLMmgWR0Cm1kPL5h0AdX2UKGgGaAloD0MIhqsDIO7qAsCUhpRSlGgVSzJoFkdAptiJClabF3V9lChoBmgJaA9DCGglrfiGggfAlIaUUpRoFUsyaBZHQKbYMG9pRGd1fZQoaAZoCWgPQwhDxqNUwlP0v5SGlFKUaBVLMmgWR0Cm19G78Nx3dX2UKGgGaAloD0MI7unqjsX297+UhpRSlGgVSzJoFkdApteL1bqyGHV9lChoBmgJaA9DCN7LfXIU4P+/lIaUUpRoFUsyaBZHQKbZhuCwr2B1fZQoaAZoCWgPQwjknq7uWAwAwJSGlFKUaBVLMmgWR0Cm2S4DLbHqdX2UKGgGaAloD0MI2QqalljZ+r+UhpRSlGgVSzJoFkdAptjPYpUgjnV9lChoBmgJaA9DCA0AVdy4JQ3AlIaUUpRoFUsyaBZHQKbYiaDPGAF1fZQoaAZoCWgPQwjcSq/Nxgr8v5SGlFKUaBVLMmgWR0Cm2oyup0fYdX2UKGgGaAloD0MIMevFUE50+L+UhpRSlGgVSzJoFkdApto0BU70WnV9lChoBmgJaA9DCMKKU62F2fu/lIaUUpRoFUsyaBZHQKbZ1V6NVBF1fZQoaAZoCWgPQwg7cM6I0p75v5SGlFKUaBVLMmgWR0Cm2Y+BYmsvdX2UKGgGaAloD0MIc/c5PlocB8CUhpRSlGgVSzJoFkdAptum2oegc3V9lChoBmgJaA9DCIL+Qo8Yvf6/lIaUUpRoFUsyaBZHQKbbTirksBh1fZQoaAZoCWgPQwg1s5YC0h4CwJSGlFKUaBVLMmgWR0Cm2u9UsFt9dX2UKGgGaAloD0MIkZighm8h/r+UhpRSlGgVSzJoFkdAptqpUkv9L3V9lChoBmgJaA9DCO1I9Z1fFP2/lIaUUpRoFUsyaBZHQKbc2K/Efkp1fZQoaAZoCWgPQwgfgqrRqyECwJSGlFKUaBVLMmgWR0Cm3H/+CK77dX2UKGgGaAloD0MIcCTQYFNn9b+UhpRSlGgVSzJoFkdAptwiJ0nw5XV9lChoBmgJaA9DCI4hADj27Pi/lIaUUpRoFUsyaBZHQKbb3E1l5GB1fZQoaAZoCWgPQwgwgzEiUcgCwJSGlFKUaBVLMmgWR0Cm3e/CIk7fdX2UKGgGaAloD0MIXd2x2Ca1A8CUhpRSlGgVSzJoFkdApt2WtGNJe3V9lChoBmgJaA9DCLHdPUD3Jf+/lIaUUpRoFUsyaBZHQKbdN/MGHHp1fZQoaAZoCWgPQwiVYkfjUB8NwJSGlFKUaBVLMmgWR0Cm3PIsiB5HdX2UKGgGaAloD0MI+64I/rdyBsCUhpRSlGgVSzJoFkdApt72FvhqCnV9lChoBmgJaA9DCDzbozfcR/+/lIaUUpRoFUsyaBZHQKbenYwIt191fZQoaAZoCWgPQwgPZD21+ooCwJSGlFKUaBVLMmgWR0Cm3j+o99tudX2UKGgGaAloD0MIzqj5KvlY+r+UhpRSlGgVSzJoFkdApt35ddE9dXV9lChoBmgJaA9DCD5ZMVwdgPS/lIaUUpRoFUsyaBZHQKbgATY/Vy51fZQoaAZoCWgPQwjmrE85Jkv7v5SGlFKUaBVLMmgWR0Cm36hvaURndX2UKGgGaAloD0MIzhq8r8pF/b+UhpRSlGgVSzJoFkdApt9JtxdY4nV9lChoBmgJaA9DCKD5nLtdb/q/lIaUUpRoFUsyaBZHQKbfA7U5MlF1fZQoaAZoCWgPQwicNA2K5mEOwJSGlFKUaBVLMmgWR0Cm4QH1nM+vdX2UKGgGaAloD0MI5Eo9C0LZB8CUhpRSlGgVSzJoFkdApuCpW1c+q3V9lChoBmgJaA9DCP4pVaLs7f2/lIaUUpRoFUsyaBZHQKbgStBfKIV1fZQoaAZoCWgPQwjP29jsSPX9v5SGlFKUaBVLMmgWR0Cm4AUhePaMdX2UKGgGaAloD0MI+dwJ9l8nCMCUhpRSlGgVSzJoFkdApuIUgZCOWHV9lChoBmgJaA9DCEqX/iWpzPi/lIaUUpRoFUsyaBZHQKbhu9Ba9sd1fZQoaAZoCWgPQwgmGTkLe9rxv5SGlFKUaBVLMmgWR0Cm4V09yLhrdX2UKGgGaAloD0MIcsEZ/P2CD8CUhpRSlGgVSzJoFkdApuEXWUbDM3V9lChoBmgJaA9DCOAPP/89+Py/lIaUUpRoFUsyaBZHQKbjG/FBIFx1fZQoaAZoCWgPQwjlRpG1hpLwv5SGlFKUaBVLMmgWR0Cm4sNNi6QOdX2UKGgGaAloD0MIK6G7JM4qAMCUhpRSlGgVSzJoFkdApuJkyJsO5XV9lChoBmgJaA9DCIIf1bDfU/S/lIaUUpRoFUsyaBZHQKbiHt78ejp1fZQoaAZoCWgPQwj/dW7ajJMCwJSGlFKUaBVLMmgWR0Cm5DGl67d0dX2UKGgGaAloD0MIGan3VE579L+UhpRSlGgVSzJoFkdApuPZDArQPnV9lChoBmgJaA9DCJG3XP3YZPS/lIaUUpRoFUsyaBZHQKbjel9jPOZ1fZQoaAZoCWgPQwhEUDV6NaADwJSGlFKUaBVLMmgWR0Cm4zRtHhCMdX2UKGgGaAloD0MIVBuciH7tCcCUhpRSlGgVSzJoFkdApuU4xBVuJnV9lChoBmgJaA9DCAskKH6MWQHAlIaUUpRoFUsyaBZHQKbk4CuloDh1fZQoaAZoCWgPQwjL1Y9N8oMCwJSGlFKUaBVLMmgWR0Cm5IE4vN/wdX2UKGgGaAloD0MIkQn4NZIE9r+UhpRSlGgVSzJoFkdApuQ7coH9nHV9lChoBmgJaA9DCM6N6QlLXAvAlIaUUpRoFUsyaBZHQKbmSVlf7aZ1fZQoaAZoCWgPQwhBZJEm3iEFwJSGlFKUaBVLMmgWR0Cm5fDO9nK5dX2UKGgGaAloD0MIxEKtad7x9b+UhpRSlGgVSzJoFkdApuWSP6sQunV9lChoBmgJaA9DCEImGTkLu/y/lIaUUpRoFUsyaBZHQKblTG96C191ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (769 kB). View file
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.7385408006608487, "std_reward": 0.5170081542674125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-07T22:30:08.928016"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcd98578a5b659ea4477e5bc432b2faae2e59bff0bfb6b788843ca767ceafde4
|
3 |
size 2387
|