DataBindu commited on
Commit
8c2b497
·
1 Parent(s): 459a889

Model save

Browse files
Files changed (2) hide show
  1. README.md +85 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.6990740740740741
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes
32
+
33
+ This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.0311
36
+ - Accuracy: 0.6991
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 3.8445 | 0.98 | 15 | 2.8535 | 0.3194 |
71
+ | 2.1358 | 1.97 | 30 | 1.9654 | 0.4491 |
72
+ | 1.5947 | 2.95 | 45 | 1.4172 | 0.6204 |
73
+ | 1.045 | 4.0 | 61 | 1.1698 | 0.6806 |
74
+ | 0.985 | 4.98 | 76 | 1.1927 | 0.6852 |
75
+ | 0.775 | 5.97 | 91 | 1.1012 | 0.6898 |
76
+ | 0.7207 | 6.95 | 106 | 1.0311 | 0.7130 |
77
+ | 0.6611 | 7.87 | 120 | 1.0311 | 0.6991 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.33.1
83
+ - Pytorch 2.0.1+cpu
84
+ - Datasets 2.14.4
85
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:307e6e27668b47aba4c28653faa2abdb127b2411b0cac89d82002bacf2717cca
3
  size 781335857
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f6c4aba1a712e65444804965be43b9c4aa07aee7b7db59bc413ebb37a2a5b18
3
  size 781335857