David19930 commited on
Commit
a6611fb
1 Parent(s): 0378fe1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -3
README.md CHANGED
@@ -1,3 +1,89 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: object-detection
6
+ tags:
7
+ - code
8
+ ---
9
+ # David YOLOS Model
10
+
11
+ This repository contains a custom YOLOS model fine-tuned on the [Balloon Dataset](https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon) for object detection tasks. The model was trained using the PyTorch Lightning framework and is available for inference and further fine-tuning.
12
+
13
+ ## Model Details
14
+
15
+ - **Model Architecture**: YOLOS (You Only Look One-level Object Structure)
16
+ - **Base Model**: `hustvl/yolos-small`
17
+ - **Training Framework**: PyTorch Lightning
18
+ - **Dataset**: Balloon Dataset
19
+ - **Number of Classes**: 1 (Balloon)
20
+
21
+ ## Installation and Usage
22
+
23
+ ### Installation
24
+
25
+ You can install the necessary libraries using:
26
+
27
+ ```bash
28
+ pip install transformers torch torchvision
29
+ ```
30
+
31
+ # Usage
32
+ You can load and use the model with the following code:
33
+
34
+ ```python
35
+ from transformers import AutoModelForObjectDetection, AutoFeatureExtractor
36
+ from PIL import Image
37
+ import torch
38
+
39
+ # Load model and feature extractor
40
+ model_name = "your-username/my-custom-yolos-model"
41
+ model = AutoModelForObjectDetection.from_pretrained(model_name)
42
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
43
+
44
+ # Load an image
45
+ image = Image.open("path/to/your/image.jpg")
46
+
47
+ # Preprocess the image
48
+ inputs = feature_extractor(images=image, return_tensors="pt")
49
+ pixel_values = inputs['pixel_values']
50
+
51
+ # Perform inference
52
+ model.eval()
53
+ with torch.no_grad():
54
+ outputs = model(pixel_values=pixel_values)
55
+
56
+ # Visualize the results
57
+ # (Insert visualization code here)
58
+ ```
59
+
60
+ # Model Performance
61
+ - Training Loss: 0.0614
62
+ - Validation Loss: 0.1784
63
+ - Training Dataset: Balloon Dataset (XXX images)
64
+ - Validation Dataset: Balloon Dataset (XXX images)
65
+ - Number of Epochs: 75
66
+
67
+
68
+ # Citation
69
+ If you use this model in your research, please cite:
70
+
71
+ ```bibtex
72
+ Copy code
73
+ @misc{my-custom-yolos-model,
74
+ author = {Your Name},
75
+ title = {YOLOS Fine-tuned on Balloon Dataset},
76
+ year = {2024},
77
+ publisher = {Hugging Face},
78
+ howpublished = {\url{https://huggingface.co/your-username/my-custom-yolos-model}},
79
+ }
80
+ ```
81
+
82
+ # License
83
+
84
+ This model is licensed under the MIT License. Feel free to use, modify, and distribute it as you see fit.
85
+
86
+
87
+ # Copy code
88
+
89
+ You can copy and paste this Markdown into your README file on Hugging Face.