DavidErikMollberg
commited on
Commit
•
7460017
1
Parent(s):
ed3e91a
adding checkpoint 6000
Browse files- checkpoint-6000/config.json +41 -0
- checkpoint-6000/global_step6000/mp_rank_00_model_states.pt +3 -0
- checkpoint-6000/global_step6000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-6000/latest +1 -0
- checkpoint-6000/preprocessor_config.json +0 -0
- checkpoint-6000/pytorch_model.bin +3 -0
- checkpoint-6000/rng_state.pth +3 -0
- checkpoint-6000/trainer_state.json +1510 -0
- checkpoint-6000/training_args.bin +3 -0
- checkpoint-6000/zero_to_fp32.py +482 -0
checkpoint-6000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-6000/global_step6000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:235a017d37438a1c9c6d9d3fe96e5a8a5b803294909de73f9ff7887322ee4b21
|
3 |
+
size 1527967899
|
checkpoint-6000/global_step6000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a17a4f5e0259867e1fd646c5a33eab8d0a5e98d1e61f84d0c9a2ae7a29745dc
|
3 |
+
size 9166378846
|
checkpoint-6000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step6000
|
checkpoint-6000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-6000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54cd6bbe3bb4b7e34719dfbf66d1ed965431cc33215003245869ddd3befc1620
|
3 |
+
size 1527847357
|
checkpoint-6000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f92a27bbf0f0370921b88ccbb3b02c1f378569056abb5feff869f62853b3aac7
|
3 |
+
size 14575
|
checkpoint-6000/trainer_state.json
ADDED
@@ -0,0 +1,1510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 12.226690123146518,
|
3 |
+
"best_model_checkpoint": "./checkpoint-6000",
|
4 |
+
"epoch": 0.2,
|
5 |
+
"global_step": 6000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 5.0453611334320685e-06,
|
13 |
+
"loss": 1.2966,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 6.229195710491767e-06,
|
19 |
+
"loss": 0.8695,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 6.903829450223392e-06,
|
25 |
+
"loss": 0.7429,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 7.377725845391017e-06,
|
31 |
+
"loss": 0.6562,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 7.743343231239583e-06,
|
37 |
+
"loss": 0.6217,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 8.041073861170494e-06,
|
43 |
+
"loss": 0.5393,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 8.292222957399574e-06,
|
49 |
+
"loss": 0.5282,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.01,
|
54 |
+
"learning_rate": 8.509413541357755e-06,
|
55 |
+
"loss": 0.5062,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 8.700744577655557e-06,
|
61 |
+
"loss": 0.4942,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.01,
|
66 |
+
"learning_rate": 8.871723942761204e-06,
|
67 |
+
"loss": 0.4508,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.01,
|
72 |
+
"learning_rate": 9.026267958246849e-06,
|
73 |
+
"loss": 0.4466,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.01,
|
78 |
+
"learning_rate": 9.16726106663399e-06,
|
79 |
+
"loss": 0.4026,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02,
|
84 |
+
"learning_rate": 9.296889251455016e-06,
|
85 |
+
"loss": 0.37,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.02,
|
90 |
+
"learning_rate": 9.416848797368692e-06,
|
91 |
+
"loss": 0.3864,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.02,
|
96 |
+
"learning_rate": 9.528482449516371e-06,
|
97 |
+
"loss": 0.3801,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.02,
|
102 |
+
"learning_rate": 9.632871309784314e-06,
|
103 |
+
"loss": 0.3893,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.02,
|
108 |
+
"learning_rate": 9.73089868785391e-06,
|
109 |
+
"loss": 0.4079,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.02,
|
114 |
+
"learning_rate": 9.823295589572114e-06,
|
115 |
+
"loss": 0.3554,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.02,
|
120 |
+
"learning_rate": 9.910673836465484e-06,
|
121 |
+
"loss": 0.3197,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.03,
|
126 |
+
"learning_rate": 9.993550644973805e-06,
|
127 |
+
"loss": 0.3405,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.03,
|
132 |
+
"learning_rate": 9.98871794871795e-06,
|
133 |
+
"loss": 0.3328,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.03,
|
138 |
+
"learning_rate": 9.975897435897436e-06,
|
139 |
+
"loss": 0.3147,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.03,
|
144 |
+
"learning_rate": 9.963076923076925e-06,
|
145 |
+
"loss": 0.2954,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.03,
|
150 |
+
"learning_rate": 9.950256410256412e-06,
|
151 |
+
"loss": 0.3034,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.03,
|
156 |
+
"learning_rate": 9.937435897435898e-06,
|
157 |
+
"loss": 0.2931,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.03,
|
162 |
+
"learning_rate": 9.924615384615385e-06,
|
163 |
+
"loss": 0.2798,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.03,
|
168 |
+
"learning_rate": 9.911794871794874e-06,
|
169 |
+
"loss": 0.2619,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.04,
|
174 |
+
"learning_rate": 9.89897435897436e-06,
|
175 |
+
"loss": 0.3157,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.04,
|
180 |
+
"learning_rate": 9.886153846153846e-06,
|
181 |
+
"loss": 0.2937,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.04,
|
186 |
+
"learning_rate": 9.873333333333334e-06,
|
187 |
+
"loss": 0.2606,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.04,
|
192 |
+
"learning_rate": 9.860512820512821e-06,
|
193 |
+
"loss": 0.2482,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.04,
|
198 |
+
"learning_rate": 9.847692307692308e-06,
|
199 |
+
"loss": 0.2539,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.04,
|
204 |
+
"learning_rate": 9.834871794871795e-06,
|
205 |
+
"loss": 0.2501,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.04,
|
210 |
+
"learning_rate": 9.822051282051283e-06,
|
211 |
+
"loss": 0.241,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04,
|
216 |
+
"learning_rate": 9.80923076923077e-06,
|
217 |
+
"loss": 0.2323,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.04,
|
222 |
+
"learning_rate": 9.796410256410257e-06,
|
223 |
+
"loss": 0.2507,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.05,
|
228 |
+
"learning_rate": 9.783589743589744e-06,
|
229 |
+
"loss": 0.2157,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.05,
|
234 |
+
"learning_rate": 9.770769230769232e-06,
|
235 |
+
"loss": 0.2356,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.05,
|
240 |
+
"learning_rate": 9.757948717948719e-06,
|
241 |
+
"loss": 0.2352,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.05,
|
246 |
+
"learning_rate": 9.745128205128206e-06,
|
247 |
+
"loss": 0.2181,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.05,
|
252 |
+
"eval_loss": 0.2607421875,
|
253 |
+
"eval_runtime": 228.2189,
|
254 |
+
"eval_samples_per_second": 4.382,
|
255 |
+
"eval_steps_per_second": 0.14,
|
256 |
+
"eval_wer": 18.384016084443328,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.0,
|
261 |
+
"learning_rate": 9.733333333333334e-06,
|
262 |
+
"loss": 0.2279,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.0,
|
267 |
+
"learning_rate": 9.720512820512822e-06,
|
268 |
+
"loss": 0.225,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.0,
|
273 |
+
"learning_rate": 9.707692307692308e-06,
|
274 |
+
"loss": 0.2238,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.01,
|
279 |
+
"learning_rate": 9.694871794871794e-06,
|
280 |
+
"loss": 0.228,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.01,
|
285 |
+
"learning_rate": 9.682051282051283e-06,
|
286 |
+
"loss": 0.2261,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.01,
|
291 |
+
"learning_rate": 9.66923076923077e-06,
|
292 |
+
"loss": 0.196,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.01,
|
297 |
+
"learning_rate": 9.656410256410257e-06,
|
298 |
+
"loss": 0.1962,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.01,
|
303 |
+
"learning_rate": 9.643589743589743e-06,
|
304 |
+
"loss": 0.1931,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.01,
|
309 |
+
"learning_rate": 9.630769230769232e-06,
|
310 |
+
"loss": 0.1827,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.01,
|
315 |
+
"learning_rate": 9.617948717948719e-06,
|
316 |
+
"loss": 0.1815,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.01,
|
321 |
+
"learning_rate": 9.605128205128206e-06,
|
322 |
+
"loss": 0.1972,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.01,
|
327 |
+
"learning_rate": 9.592307692307692e-06,
|
328 |
+
"loss": 0.1681,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.02,
|
333 |
+
"learning_rate": 9.579487179487181e-06,
|
334 |
+
"loss": 0.151,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.02,
|
339 |
+
"learning_rate": 9.566666666666668e-06,
|
340 |
+
"loss": 0.1743,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.02,
|
345 |
+
"learning_rate": 9.553846153846155e-06,
|
346 |
+
"loss": 0.1808,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.02,
|
351 |
+
"learning_rate": 9.541025641025641e-06,
|
352 |
+
"loss": 0.1984,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.02,
|
357 |
+
"learning_rate": 9.52820512820513e-06,
|
358 |
+
"loss": 0.2098,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.02,
|
363 |
+
"learning_rate": 9.515384615384617e-06,
|
364 |
+
"loss": 0.1741,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.02,
|
369 |
+
"learning_rate": 9.502564102564103e-06,
|
370 |
+
"loss": 0.1489,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.03,
|
375 |
+
"learning_rate": 9.48974358974359e-06,
|
376 |
+
"loss": 0.1655,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.03,
|
381 |
+
"learning_rate": 9.476923076923079e-06,
|
382 |
+
"loss": 0.1643,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.03,
|
387 |
+
"learning_rate": 9.464102564102566e-06,
|
388 |
+
"loss": 0.151,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.03,
|
393 |
+
"learning_rate": 9.451282051282052e-06,
|
394 |
+
"loss": 0.1431,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.03,
|
399 |
+
"learning_rate": 9.43846153846154e-06,
|
400 |
+
"loss": 0.1503,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.03,
|
405 |
+
"learning_rate": 9.425641025641026e-06,
|
406 |
+
"loss": 0.1491,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.03,
|
411 |
+
"learning_rate": 9.412820512820515e-06,
|
412 |
+
"loss": 0.1408,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.03,
|
417 |
+
"learning_rate": 9.4e-06,
|
418 |
+
"loss": 0.1294,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.04,
|
423 |
+
"learning_rate": 9.387179487179488e-06,
|
424 |
+
"loss": 0.1618,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.04,
|
429 |
+
"learning_rate": 9.374358974358975e-06,
|
430 |
+
"loss": 0.1484,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.04,
|
435 |
+
"learning_rate": 9.361538461538462e-06,
|
436 |
+
"loss": 0.1298,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.04,
|
441 |
+
"learning_rate": 9.348717948717949e-06,
|
442 |
+
"loss": 0.1231,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.04,
|
447 |
+
"learning_rate": 9.335897435897436e-06,
|
448 |
+
"loss": 0.1241,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.04,
|
453 |
+
"learning_rate": 9.323076923076924e-06,
|
454 |
+
"loss": 0.1215,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.04,
|
459 |
+
"learning_rate": 9.310256410256411e-06,
|
460 |
+
"loss": 0.1225,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.04,
|
465 |
+
"learning_rate": 9.297435897435898e-06,
|
466 |
+
"loss": 0.1122,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.04,
|
471 |
+
"learning_rate": 9.284615384615385e-06,
|
472 |
+
"loss": 0.1191,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.05,
|
477 |
+
"learning_rate": 9.271794871794873e-06,
|
478 |
+
"loss": 0.0995,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.05,
|
483 |
+
"learning_rate": 9.25897435897436e-06,
|
484 |
+
"loss": 0.1199,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.05,
|
489 |
+
"learning_rate": 9.246153846153847e-06,
|
490 |
+
"loss": 0.1243,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.05,
|
495 |
+
"learning_rate": 9.233333333333334e-06,
|
496 |
+
"loss": 0.1089,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.05,
|
501 |
+
"eval_loss": 0.2489013671875,
|
502 |
+
"eval_runtime": 209.1058,
|
503 |
+
"eval_samples_per_second": 4.782,
|
504 |
+
"eval_steps_per_second": 0.153,
|
505 |
+
"eval_wer": 16.486554410655945,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.0,
|
510 |
+
"learning_rate": 9.221538461538462e-06,
|
511 |
+
"loss": 0.1231,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.0,
|
516 |
+
"learning_rate": 9.208717948717948e-06,
|
517 |
+
"loss": 0.1173,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.0,
|
522 |
+
"learning_rate": 9.195897435897437e-06,
|
523 |
+
"loss": 0.1234,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.01,
|
528 |
+
"learning_rate": 9.183076923076924e-06,
|
529 |
+
"loss": 0.1244,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.01,
|
534 |
+
"learning_rate": 9.17025641025641e-06,
|
535 |
+
"loss": 0.1223,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.01,
|
540 |
+
"learning_rate": 9.157435897435897e-06,
|
541 |
+
"loss": 0.1027,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.01,
|
546 |
+
"learning_rate": 9.144615384615386e-06,
|
547 |
+
"loss": 0.1022,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.01,
|
552 |
+
"learning_rate": 9.131794871794873e-06,
|
553 |
+
"loss": 0.1013,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.01,
|
558 |
+
"learning_rate": 9.11897435897436e-06,
|
559 |
+
"loss": 0.0949,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.01,
|
564 |
+
"learning_rate": 9.106153846153846e-06,
|
565 |
+
"loss": 0.0971,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.01,
|
570 |
+
"learning_rate": 9.093333333333333e-06,
|
571 |
+
"loss": 0.1098,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.01,
|
576 |
+
"learning_rate": 9.080512820512822e-06,
|
577 |
+
"loss": 0.0861,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.02,
|
582 |
+
"learning_rate": 9.067692307692309e-06,
|
583 |
+
"loss": 0.0765,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.02,
|
588 |
+
"learning_rate": 9.054871794871795e-06,
|
589 |
+
"loss": 0.0933,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.02,
|
594 |
+
"learning_rate": 9.042051282051282e-06,
|
595 |
+
"loss": 0.1025,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.02,
|
600 |
+
"learning_rate": 9.02923076923077e-06,
|
601 |
+
"loss": 0.1138,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.02,
|
606 |
+
"learning_rate": 9.016410256410258e-06,
|
607 |
+
"loss": 0.1198,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.02,
|
612 |
+
"learning_rate": 9.003589743589744e-06,
|
613 |
+
"loss": 0.0981,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.02,
|
618 |
+
"learning_rate": 8.990769230769231e-06,
|
619 |
+
"loss": 0.0807,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.03,
|
624 |
+
"learning_rate": 8.97794871794872e-06,
|
625 |
+
"loss": 0.0875,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.03,
|
630 |
+
"learning_rate": 8.965128205128207e-06,
|
631 |
+
"loss": 0.0911,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.03,
|
636 |
+
"learning_rate": 8.952307692307693e-06,
|
637 |
+
"loss": 0.0796,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.03,
|
642 |
+
"learning_rate": 8.93948717948718e-06,
|
643 |
+
"loss": 0.0766,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.03,
|
648 |
+
"learning_rate": 8.926666666666669e-06,
|
649 |
+
"loss": 0.0862,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.03,
|
654 |
+
"learning_rate": 8.913846153846154e-06,
|
655 |
+
"loss": 0.0822,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.03,
|
660 |
+
"learning_rate": 8.90102564102564e-06,
|
661 |
+
"loss": 0.0757,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.03,
|
666 |
+
"learning_rate": 8.88820512820513e-06,
|
667 |
+
"loss": 0.0674,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.04,
|
672 |
+
"learning_rate": 8.875384615384616e-06,
|
673 |
+
"loss": 0.0913,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.04,
|
678 |
+
"learning_rate": 8.862564102564103e-06,
|
679 |
+
"loss": 0.0815,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.04,
|
684 |
+
"learning_rate": 8.84974358974359e-06,
|
685 |
+
"loss": 0.0687,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.04,
|
690 |
+
"learning_rate": 8.836923076923078e-06,
|
691 |
+
"loss": 0.0649,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.04,
|
696 |
+
"learning_rate": 8.824102564102565e-06,
|
697 |
+
"loss": 0.0647,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.04,
|
702 |
+
"learning_rate": 8.811282051282052e-06,
|
703 |
+
"loss": 0.0607,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.04,
|
708 |
+
"learning_rate": 8.798461538461539e-06,
|
709 |
+
"loss": 0.065,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.04,
|
714 |
+
"learning_rate": 8.785641025641025e-06,
|
715 |
+
"loss": 0.058,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.04,
|
720 |
+
"learning_rate": 8.772820512820514e-06,
|
721 |
+
"loss": 0.0618,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.05,
|
726 |
+
"learning_rate": 8.76e-06,
|
727 |
+
"loss": 0.0491,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.05,
|
732 |
+
"learning_rate": 8.747179487179488e-06,
|
733 |
+
"loss": 0.0646,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.05,
|
738 |
+
"learning_rate": 8.734358974358974e-06,
|
739 |
+
"loss": 0.0673,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.05,
|
744 |
+
"learning_rate": 8.721538461538463e-06,
|
745 |
+
"loss": 0.0564,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.05,
|
750 |
+
"eval_loss": 0.261474609375,
|
751 |
+
"eval_runtime": 212.2501,
|
752 |
+
"eval_samples_per_second": 4.711,
|
753 |
+
"eval_steps_per_second": 0.151,
|
754 |
+
"eval_wer": 16.14727318421714,
|
755 |
+
"step": 3000
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.05,
|
759 |
+
"learning_rate": 8.70974358974359e-06,
|
760 |
+
"loss": 0.1893,
|
761 |
+
"step": 3025
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.05,
|
765 |
+
"learning_rate": 8.696923076923078e-06,
|
766 |
+
"loss": 0.1774,
|
767 |
+
"step": 3050
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.05,
|
771 |
+
"learning_rate": 8.684102564102565e-06,
|
772 |
+
"loss": 0.1866,
|
773 |
+
"step": 3075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.06,
|
777 |
+
"learning_rate": 8.671282051282051e-06,
|
778 |
+
"loss": 0.1896,
|
779 |
+
"step": 3100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.06,
|
783 |
+
"learning_rate": 8.658461538461538e-06,
|
784 |
+
"loss": 0.1925,
|
785 |
+
"step": 3125
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.06,
|
789 |
+
"learning_rate": 8.645641025641027e-06,
|
790 |
+
"loss": 0.2126,
|
791 |
+
"step": 3150
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 0.06,
|
795 |
+
"learning_rate": 8.632820512820514e-06,
|
796 |
+
"loss": 0.2004,
|
797 |
+
"step": 3175
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.06,
|
801 |
+
"learning_rate": 8.62e-06,
|
802 |
+
"loss": 0.1636,
|
803 |
+
"step": 3200
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.06,
|
807 |
+
"learning_rate": 8.607179487179487e-06,
|
808 |
+
"loss": 0.1597,
|
809 |
+
"step": 3225
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.06,
|
813 |
+
"learning_rate": 8.594358974358976e-06,
|
814 |
+
"loss": 0.1768,
|
815 |
+
"step": 3250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.06,
|
819 |
+
"learning_rate": 8.581538461538463e-06,
|
820 |
+
"loss": 0.1684,
|
821 |
+
"step": 3275
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.07,
|
825 |
+
"learning_rate": 8.56871794871795e-06,
|
826 |
+
"loss": 0.1739,
|
827 |
+
"step": 3300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 0.07,
|
831 |
+
"learning_rate": 8.555897435897436e-06,
|
832 |
+
"loss": 0.1706,
|
833 |
+
"step": 3325
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 0.07,
|
837 |
+
"learning_rate": 8.543076923076923e-06,
|
838 |
+
"loss": 0.1701,
|
839 |
+
"step": 3350
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.07,
|
843 |
+
"learning_rate": 8.530256410256412e-06,
|
844 |
+
"loss": 0.1564,
|
845 |
+
"step": 3375
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.07,
|
849 |
+
"learning_rate": 8.517435897435898e-06,
|
850 |
+
"loss": 0.1627,
|
851 |
+
"step": 3400
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.07,
|
855 |
+
"learning_rate": 8.504615384615385e-06,
|
856 |
+
"loss": 0.1586,
|
857 |
+
"step": 3425
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.07,
|
861 |
+
"learning_rate": 8.491794871794872e-06,
|
862 |
+
"loss": 0.1579,
|
863 |
+
"step": 3450
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.07,
|
867 |
+
"learning_rate": 8.47897435897436e-06,
|
868 |
+
"loss": 0.1676,
|
869 |
+
"step": 3475
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 0.07,
|
873 |
+
"learning_rate": 8.466153846153847e-06,
|
874 |
+
"loss": 0.1558,
|
875 |
+
"step": 3500
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 0.08,
|
879 |
+
"learning_rate": 8.453333333333334e-06,
|
880 |
+
"loss": 0.1624,
|
881 |
+
"step": 3525
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 0.08,
|
885 |
+
"learning_rate": 8.440512820512821e-06,
|
886 |
+
"loss": 0.1459,
|
887 |
+
"step": 3550
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.08,
|
891 |
+
"learning_rate": 8.427692307692308e-06,
|
892 |
+
"loss": 0.151,
|
893 |
+
"step": 3575
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.08,
|
897 |
+
"learning_rate": 8.414871794871795e-06,
|
898 |
+
"loss": 0.1524,
|
899 |
+
"step": 3600
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.08,
|
903 |
+
"learning_rate": 8.402051282051282e-06,
|
904 |
+
"loss": 0.1444,
|
905 |
+
"step": 3625
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.08,
|
909 |
+
"learning_rate": 8.38923076923077e-06,
|
910 |
+
"loss": 0.1218,
|
911 |
+
"step": 3650
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 0.08,
|
915 |
+
"learning_rate": 8.376410256410257e-06,
|
916 |
+
"loss": 0.1207,
|
917 |
+
"step": 3675
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.09,
|
921 |
+
"learning_rate": 8.363589743589744e-06,
|
922 |
+
"loss": 0.1199,
|
923 |
+
"step": 3700
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 0.09,
|
927 |
+
"learning_rate": 8.35076923076923e-06,
|
928 |
+
"loss": 0.1154,
|
929 |
+
"step": 3725
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.09,
|
933 |
+
"learning_rate": 8.337948717948719e-06,
|
934 |
+
"loss": 0.1075,
|
935 |
+
"step": 3750
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.09,
|
939 |
+
"learning_rate": 8.325128205128206e-06,
|
940 |
+
"loss": 0.1005,
|
941 |
+
"step": 3775
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.09,
|
945 |
+
"learning_rate": 8.312307692307693e-06,
|
946 |
+
"loss": 0.1053,
|
947 |
+
"step": 3800
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.09,
|
951 |
+
"learning_rate": 8.29948717948718e-06,
|
952 |
+
"loss": 0.1087,
|
953 |
+
"step": 3825
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 0.09,
|
957 |
+
"learning_rate": 8.286666666666668e-06,
|
958 |
+
"loss": 0.1207,
|
959 |
+
"step": 3850
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 0.09,
|
963 |
+
"learning_rate": 8.273846153846155e-06,
|
964 |
+
"loss": 0.1099,
|
965 |
+
"step": 3875
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 0.1,
|
969 |
+
"learning_rate": 8.261025641025642e-06,
|
970 |
+
"loss": 0.1054,
|
971 |
+
"step": 3900
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 0.1,
|
975 |
+
"learning_rate": 8.248205128205129e-06,
|
976 |
+
"loss": 0.1019,
|
977 |
+
"step": 3925
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.1,
|
981 |
+
"learning_rate": 8.235384615384615e-06,
|
982 |
+
"loss": 0.0974,
|
983 |
+
"step": 3950
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.1,
|
987 |
+
"learning_rate": 8.222564102564104e-06,
|
988 |
+
"loss": 0.0975,
|
989 |
+
"step": 3975
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.1,
|
993 |
+
"learning_rate": 8.20974358974359e-06,
|
994 |
+
"loss": 0.1031,
|
995 |
+
"step": 4000
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 0.1,
|
999 |
+
"eval_loss": 0.1995849609375,
|
1000 |
+
"eval_runtime": 214.2177,
|
1001 |
+
"eval_samples_per_second": 4.668,
|
1002 |
+
"eval_steps_per_second": 0.149,
|
1003 |
+
"eval_wer": 14.224679567730586,
|
1004 |
+
"step": 4000
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.1,
|
1008 |
+
"learning_rate": 8.197948717948719e-06,
|
1009 |
+
"loss": 0.1122,
|
1010 |
+
"step": 4025
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1,
|
1014 |
+
"learning_rate": 8.185128205128206e-06,
|
1015 |
+
"loss": 0.1038,
|
1016 |
+
"step": 4050
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.1,
|
1020 |
+
"learning_rate": 8.172307692307692e-06,
|
1021 |
+
"loss": 0.1172,
|
1022 |
+
"step": 4075
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.1,
|
1026 |
+
"learning_rate": 8.15948717948718e-06,
|
1027 |
+
"loss": 0.1251,
|
1028 |
+
"step": 4100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.11,
|
1032 |
+
"learning_rate": 8.146666666666668e-06,
|
1033 |
+
"loss": 0.1306,
|
1034 |
+
"step": 4125
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.11,
|
1038 |
+
"learning_rate": 8.133846153846155e-06,
|
1039 |
+
"loss": 0.1043,
|
1040 |
+
"step": 4150
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.11,
|
1044 |
+
"learning_rate": 8.121025641025641e-06,
|
1045 |
+
"loss": 0.1095,
|
1046 |
+
"step": 4175
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.11,
|
1050 |
+
"learning_rate": 8.108205128205128e-06,
|
1051 |
+
"loss": 0.1194,
|
1052 |
+
"step": 4200
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.11,
|
1056 |
+
"learning_rate": 8.095384615384617e-06,
|
1057 |
+
"loss": 0.1209,
|
1058 |
+
"step": 4225
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.11,
|
1062 |
+
"learning_rate": 8.082564102564104e-06,
|
1063 |
+
"loss": 0.1108,
|
1064 |
+
"step": 4250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.11,
|
1068 |
+
"learning_rate": 8.06974358974359e-06,
|
1069 |
+
"loss": 0.1059,
|
1070 |
+
"step": 4275
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.12,
|
1074 |
+
"learning_rate": 8.056923076923077e-06,
|
1075 |
+
"loss": 0.0923,
|
1076 |
+
"step": 4300
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.12,
|
1080 |
+
"learning_rate": 8.044102564102566e-06,
|
1081 |
+
"loss": 0.1027,
|
1082 |
+
"step": 4325
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.12,
|
1086 |
+
"learning_rate": 8.031282051282053e-06,
|
1087 |
+
"loss": 0.1008,
|
1088 |
+
"step": 4350
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.12,
|
1092 |
+
"learning_rate": 8.01846153846154e-06,
|
1093 |
+
"loss": 0.0885,
|
1094 |
+
"step": 4375
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.12,
|
1098 |
+
"learning_rate": 8.005641025641026e-06,
|
1099 |
+
"loss": 0.0916,
|
1100 |
+
"step": 4400
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.12,
|
1104 |
+
"learning_rate": 7.992820512820515e-06,
|
1105 |
+
"loss": 0.1045,
|
1106 |
+
"step": 4425
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.12,
|
1110 |
+
"learning_rate": 7.980000000000002e-06,
|
1111 |
+
"loss": 0.0954,
|
1112 |
+
"step": 4450
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.12,
|
1116 |
+
"learning_rate": 7.967179487179488e-06,
|
1117 |
+
"loss": 0.1013,
|
1118 |
+
"step": 4475
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.12,
|
1122 |
+
"learning_rate": 7.954358974358975e-06,
|
1123 |
+
"loss": 0.0983,
|
1124 |
+
"step": 4500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.13,
|
1128 |
+
"learning_rate": 7.941538461538462e-06,
|
1129 |
+
"loss": 0.1021,
|
1130 |
+
"step": 4525
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.13,
|
1134 |
+
"learning_rate": 7.928717948717949e-06,
|
1135 |
+
"loss": 0.1024,
|
1136 |
+
"step": 4550
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.13,
|
1140 |
+
"learning_rate": 7.915897435897436e-06,
|
1141 |
+
"loss": 0.1068,
|
1142 |
+
"step": 4575
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.13,
|
1146 |
+
"learning_rate": 7.903076923076922e-06,
|
1147 |
+
"loss": 0.1057,
|
1148 |
+
"step": 4600
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.13,
|
1152 |
+
"learning_rate": 7.890256410256411e-06,
|
1153 |
+
"loss": 0.1144,
|
1154 |
+
"step": 4625
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.13,
|
1158 |
+
"learning_rate": 7.877435897435898e-06,
|
1159 |
+
"loss": 0.1401,
|
1160 |
+
"step": 4650
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.13,
|
1164 |
+
"learning_rate": 7.864615384615385e-06,
|
1165 |
+
"loss": 0.1234,
|
1166 |
+
"step": 4675
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.14,
|
1170 |
+
"learning_rate": 7.851794871794871e-06,
|
1171 |
+
"loss": 0.1364,
|
1172 |
+
"step": 4700
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.14,
|
1176 |
+
"learning_rate": 7.83897435897436e-06,
|
1177 |
+
"loss": 0.1367,
|
1178 |
+
"step": 4725
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.14,
|
1182 |
+
"learning_rate": 7.826153846153847e-06,
|
1183 |
+
"loss": 0.1399,
|
1184 |
+
"step": 4750
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.14,
|
1188 |
+
"learning_rate": 7.813333333333334e-06,
|
1189 |
+
"loss": 0.1387,
|
1190 |
+
"step": 4775
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.14,
|
1194 |
+
"learning_rate": 7.80051282051282e-06,
|
1195 |
+
"loss": 0.1429,
|
1196 |
+
"step": 4800
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.14,
|
1200 |
+
"learning_rate": 7.787692307692309e-06,
|
1201 |
+
"loss": 0.134,
|
1202 |
+
"step": 4825
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.14,
|
1206 |
+
"learning_rate": 7.774871794871796e-06,
|
1207 |
+
"loss": 0.1615,
|
1208 |
+
"step": 4850
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.14,
|
1212 |
+
"learning_rate": 7.762051282051283e-06,
|
1213 |
+
"loss": 0.1502,
|
1214 |
+
"step": 4875
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.14,
|
1218 |
+
"learning_rate": 7.74923076923077e-06,
|
1219 |
+
"loss": 0.1574,
|
1220 |
+
"step": 4900
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.15,
|
1224 |
+
"learning_rate": 7.736410256410258e-06,
|
1225 |
+
"loss": 0.1529,
|
1226 |
+
"step": 4925
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.15,
|
1230 |
+
"learning_rate": 7.723589743589745e-06,
|
1231 |
+
"loss": 0.1406,
|
1232 |
+
"step": 4950
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.15,
|
1236 |
+
"learning_rate": 7.710769230769232e-06,
|
1237 |
+
"loss": 0.1363,
|
1238 |
+
"step": 4975
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.15,
|
1242 |
+
"learning_rate": 7.697948717948718e-06,
|
1243 |
+
"loss": 0.14,
|
1244 |
+
"step": 5000
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.15,
|
1248 |
+
"eval_loss": 0.18212890625,
|
1249 |
+
"eval_runtime": 217.0927,
|
1250 |
+
"eval_samples_per_second": 4.606,
|
1251 |
+
"eval_steps_per_second": 0.147,
|
1252 |
+
"eval_wer": 13.005780346820808,
|
1253 |
+
"step": 5000
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 0.15,
|
1257 |
+
"learning_rate": 7.686153846153846e-06,
|
1258 |
+
"loss": 0.1421,
|
1259 |
+
"step": 5025
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 0.15,
|
1263 |
+
"learning_rate": 7.673333333333333e-06,
|
1264 |
+
"loss": 0.1507,
|
1265 |
+
"step": 5050
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.15,
|
1269 |
+
"learning_rate": 7.660512820512822e-06,
|
1270 |
+
"loss": 0.1445,
|
1271 |
+
"step": 5075
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 0.15,
|
1275 |
+
"learning_rate": 7.647692307692309e-06,
|
1276 |
+
"loss": 0.1517,
|
1277 |
+
"step": 5100
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.16,
|
1281 |
+
"learning_rate": 7.634871794871795e-06,
|
1282 |
+
"loss": 0.1363,
|
1283 |
+
"step": 5125
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.16,
|
1287 |
+
"learning_rate": 7.622051282051282e-06,
|
1288 |
+
"loss": 0.1548,
|
1289 |
+
"step": 5150
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 0.16,
|
1293 |
+
"learning_rate": 7.60923076923077e-06,
|
1294 |
+
"loss": 0.1403,
|
1295 |
+
"step": 5175
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 0.16,
|
1299 |
+
"learning_rate": 7.596410256410257e-06,
|
1300 |
+
"loss": 0.1543,
|
1301 |
+
"step": 5200
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 0.16,
|
1305 |
+
"learning_rate": 7.5835897435897444e-06,
|
1306 |
+
"loss": 0.1386,
|
1307 |
+
"step": 5225
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.16,
|
1311 |
+
"learning_rate": 7.570769230769231e-06,
|
1312 |
+
"loss": 0.1194,
|
1313 |
+
"step": 5250
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.16,
|
1317 |
+
"learning_rate": 7.557948717948719e-06,
|
1318 |
+
"loss": 0.1075,
|
1319 |
+
"step": 5275
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.17,
|
1323 |
+
"learning_rate": 7.545128205128206e-06,
|
1324 |
+
"loss": 0.1076,
|
1325 |
+
"step": 5300
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.17,
|
1329 |
+
"learning_rate": 7.5323076923076934e-06,
|
1330 |
+
"loss": 0.1034,
|
1331 |
+
"step": 5325
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 0.17,
|
1335 |
+
"learning_rate": 7.51948717948718e-06,
|
1336 |
+
"loss": 0.1096,
|
1337 |
+
"step": 5350
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 0.17,
|
1341 |
+
"learning_rate": 7.506666666666668e-06,
|
1342 |
+
"loss": 0.1051,
|
1343 |
+
"step": 5375
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.17,
|
1347 |
+
"learning_rate": 7.493846153846155e-06,
|
1348 |
+
"loss": 0.0989,
|
1349 |
+
"step": 5400
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.17,
|
1353 |
+
"learning_rate": 7.481025641025642e-06,
|
1354 |
+
"loss": 0.1002,
|
1355 |
+
"step": 5425
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 0.17,
|
1359 |
+
"learning_rate": 7.468205128205129e-06,
|
1360 |
+
"loss": 0.0961,
|
1361 |
+
"step": 5450
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.17,
|
1365 |
+
"learning_rate": 7.455384615384615e-06,
|
1366 |
+
"loss": 0.1017,
|
1367 |
+
"step": 5475
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.17,
|
1371 |
+
"learning_rate": 7.442564102564103e-06,
|
1372 |
+
"loss": 0.088,
|
1373 |
+
"step": 5500
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 0.18,
|
1377 |
+
"learning_rate": 7.42974358974359e-06,
|
1378 |
+
"loss": 0.0921,
|
1379 |
+
"step": 5525
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 0.18,
|
1383 |
+
"learning_rate": 7.416923076923077e-06,
|
1384 |
+
"loss": 0.0921,
|
1385 |
+
"step": 5550
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 0.18,
|
1389 |
+
"learning_rate": 7.404102564102564e-06,
|
1390 |
+
"loss": 0.0853,
|
1391 |
+
"step": 5575
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.18,
|
1395 |
+
"learning_rate": 7.391282051282052e-06,
|
1396 |
+
"loss": 0.0752,
|
1397 |
+
"step": 5600
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 0.18,
|
1401 |
+
"learning_rate": 7.378461538461539e-06,
|
1402 |
+
"loss": 0.0705,
|
1403 |
+
"step": 5625
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.18,
|
1407 |
+
"learning_rate": 7.365641025641026e-06,
|
1408 |
+
"loss": 0.0743,
|
1409 |
+
"step": 5650
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.18,
|
1413 |
+
"learning_rate": 7.352820512820513e-06,
|
1414 |
+
"loss": 0.0859,
|
1415 |
+
"step": 5675
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 0.18,
|
1419 |
+
"learning_rate": 7.340000000000001e-06,
|
1420 |
+
"loss": 0.0759,
|
1421 |
+
"step": 5700
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 0.19,
|
1425 |
+
"learning_rate": 7.327179487179488e-06,
|
1426 |
+
"loss": 0.0821,
|
1427 |
+
"step": 5725
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 0.19,
|
1431 |
+
"learning_rate": 7.3143589743589745e-06,
|
1432 |
+
"loss": 0.0824,
|
1433 |
+
"step": 5750
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.19,
|
1437 |
+
"learning_rate": 7.301538461538462e-06,
|
1438 |
+
"loss": 0.0747,
|
1439 |
+
"step": 5775
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 0.19,
|
1443 |
+
"learning_rate": 7.288717948717949e-06,
|
1444 |
+
"loss": 0.072,
|
1445 |
+
"step": 5800
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.19,
|
1449 |
+
"learning_rate": 7.275897435897437e-06,
|
1450 |
+
"loss": 0.0785,
|
1451 |
+
"step": 5825
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.19,
|
1455 |
+
"learning_rate": 7.2630769230769235e-06,
|
1456 |
+
"loss": 0.0751,
|
1457 |
+
"step": 5850
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 0.19,
|
1461 |
+
"learning_rate": 7.250256410256411e-06,
|
1462 |
+
"loss": 0.0822,
|
1463 |
+
"step": 5875
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 0.2,
|
1467 |
+
"learning_rate": 7.237435897435898e-06,
|
1468 |
+
"loss": 0.101,
|
1469 |
+
"step": 5900
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 0.2,
|
1473 |
+
"learning_rate": 7.224615384615386e-06,
|
1474 |
+
"loss": 0.0896,
|
1475 |
+
"step": 5925
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 0.2,
|
1479 |
+
"learning_rate": 7.2117948717948725e-06,
|
1480 |
+
"loss": 0.1193,
|
1481 |
+
"step": 5950
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 0.2,
|
1485 |
+
"learning_rate": 7.19897435897436e-06,
|
1486 |
+
"loss": 0.0841,
|
1487 |
+
"step": 5975
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.2,
|
1491 |
+
"learning_rate": 7.186153846153847e-06,
|
1492 |
+
"loss": 0.0872,
|
1493 |
+
"step": 6000
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.2,
|
1497 |
+
"eval_loss": 0.1734619140625,
|
1498 |
+
"eval_runtime": 224.4062,
|
1499 |
+
"eval_samples_per_second": 4.456,
|
1500 |
+
"eval_steps_per_second": 0.143,
|
1501 |
+
"eval_wer": 12.226690123146518,
|
1502 |
+
"step": 6000
|
1503 |
+
}
|
1504 |
+
],
|
1505 |
+
"max_steps": 20000,
|
1506 |
+
"num_train_epochs": 9223372036854775807,
|
1507 |
+
"total_flos": 3.9191228855447716e+20,
|
1508 |
+
"trial_name": null,
|
1509 |
+
"trial_params": null
|
1510 |
+
}
|
checkpoint-6000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3261208c10fe629e4db911bd85a63442dc29a9f5a7d2fd10502e57c4432d708
|
3 |
+
size 4731
|
checkpoint-6000/zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|