update model card README.md
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
- Accuracy: 0.83
|
23 |
|
24 |
## Model description
|
@@ -38,7 +38,7 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate: 0.
|
42 |
- train_batch_size: 4
|
43 |
- eval_batch_size: 4
|
44 |
- seed: 42
|
@@ -47,22 +47,26 @@ The following hyperparameters were used during training:
|
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
-
- num_epochs:
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
-
|
56 |
-
| 1.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
- Transformers 4.30.2
|
66 |
-
- Pytorch 2.0.
|
67 |
-
- Datasets 2.1
|
68 |
- Tokenizers 0.13.3
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6925
|
22 |
- Accuracy: 0.83
|
23 |
|
24 |
## Model description
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001115511981046745
|
42 |
- train_batch_size: 4
|
43 |
- eval_batch_size: 4
|
44 |
- seed: 42
|
|
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 9
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
56 |
+
| 1.278 | 1.0 | 112 | 0.57 | 1.3298 |
|
57 |
+
| 0.8315 | 2.0 | 225 | 0.73 | 0.9432 |
|
58 |
+
| 0.7709 | 3.0 | 337 | 0.72 | 0.9310 |
|
59 |
+
| 0.5427 | 4.0 | 450 | 0.72 | 0.8738 |
|
60 |
+
| 0.2645 | 4.98 | 560 | 0.79 | 0.6648 |
|
61 |
+
| 0.245 | 6.0 | 672 | 0.83 | 0.6147 |
|
62 |
+
| 0.1331 | 6.99 | 784 | 0.83 | 0.6305 |
|
63 |
+
| 0.1863 | 8.0 | 896 | 0.6356 | 0.84 |
|
64 |
+
| 0.0843 | 8.99 | 1008 | 0.6925 | 0.83 |
|
65 |
|
66 |
|
67 |
### Framework versions
|
68 |
|
69 |
- Transformers 4.30.2
|
70 |
+
- Pytorch 2.0.1+cu117
|
71 |
+
- Datasets 2.13.1
|
72 |
- Tokenizers 0.13.3
|