Upload updated PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +26 -26
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: 276.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.76 +/- 18.21
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ea091ce4700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ea091ce4790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ea091ce4820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ea091ce48b0>", "_build": "<function ActorCriticPolicy._build at 0x7ea091ce4940>", "forward": "<function ActorCriticPolicy.forward at 0x7ea091ce49d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ea091ce4a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ea091ce4af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ea091ce4b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ea091ce4c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ea091ce4ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ea091ce4d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea091e81880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716375976981785444, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbQBL0tq2Y/qWHLvOvi0L6digy+XmwSvQAAAAAAAAAA5l4fvQp1rD9TERq+ohLZvgtg2L3KNO29AAAAAAAAAAAAnxk97DyMu2dgMrxBPZY8+kzFvBsHgD0AAIA/AACAP2rhhz5Eys4+qFatvCb7qb7zzyM+aIHFvQAAAAAAAAAAM3TbvR4U7D7SR74+pk0Lv+tMKz6jlVQ9AAAAAAAAAADaz6w9FJCGuj+8oree6Jyy+3FlOuSjuTYAAIA/AAAAALMqf73hQI+6PRYgM0rX8q7Yzpe58rXOswAAgD8AAIA/gLHDPV1fQz9y+Ck+Iy7xvs5q0D36ESk9AAAAAAAAAADNxHo7yXcBPVbq372PwES+e4zSvK3K1TwAAAAAAAAAAGbMQb09/iu7udBLO7QekDzmJJo8rqN3vQAAgD8AAIA/ZqTovXyliT//PZy+Ju3BvnmHY74tyWu+AAAAAAAAAACmu4u9S/+aP5fNnr7TPvy+mzn0vXj5g74AAAAAAAAAAOYafj0k5y08pt2UPT3eHr7Fzcg9YR+GvwAAAAAAAIA/TS3bvSlQfrpDL1a6rZ9mtjJXzrqwsXo5AACAPwAAgD/zbgm+UipqP16kmz0mUdC+QvqQvuVT7j0AAAAAAAAAADMwJD2um5C6A8iSt1yfj7Kg2AA7DmyqNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDWpxR2r4qMAWyUTZsBjAF0lEdAkWqMhTwUg3V9lChoBkdAcKjBGx2SuGgHTRIBaAhHQJFszDfm9xp1fZQoaAZHQHBPaCHymQ9oB01BAWgIR0CRbNVSn+AFdX2UKGgGR0BxVa9XcQAdaAdNEgFoCEdAkW2Gl67dznV9lChoBkdAcfK/gR9PUWgHS+loCEdAkW6llsguAnV9lChoBkdAct7T1TR6W2gHTSIBaAhHQJFusW2w3YN1fZQoaAZHQHNHPek56t1oB02UAWgIR0CRbv86mwaBdX2UKGgGR0BvrdRUFSsKaAdL7WgIR0CRb05N47iidX2UKGgGR0Bx6L3rUsnRaAdL7mgIR0CRb9M8ox5+dX2UKGgGR0Bv8yrxRVIaaAdNhAFoCEdAkXCC7Ciyp3V9lChoBkdAcGzfIjnmrGgHS+1oCEdAkXD4IBzV+nV9lChoBkdAc3Tkiliz9mgHTQQBaAhHQJFxUnhKlHl1fZQoaAZHQG1sPN/vv0BoB01LAWgIR0CRctd2Pkq+dX2UKGgGR0BvkfATIvJzaAdNKQFoCEdAkXNqPfbblHV9lChoBkdAcieNo8IRiGgHS/NoCEdAkXTv0dzXBnV9lChoBkdAcF9bm2b5M2gHTQ0BaAhHQJF1AW43FUB1fZQoaAZHQHFaah+OOsFoB02LAWgIR0CRdShjOLR8dX2UKGgGR0BwsT3lCCz1aAdNlQFoCEdAkXYBGpda+3V9lChoBkdAcij6pHZsbmgHS+toCEdAkXZ0e6qbSnV9lChoBkdAcQv8CPp6hWgHTT4BaAhHQJF21khA4XJ1fZQoaAZHQHHogi3XqaBoB00fAWgIR0CReE1stTUBdX2UKGgGR0BQeGicoYvWaAdLq2gIR0CReVmqYJE6dX2UKGgGR0BxwR7HAAQyaAdNNgFoCEdAkXpCQDFId3V9lChoBkdAbzs+TNdJKGgHTVUBaAhHQJF6t92HLzR1fZQoaAZHQHH4CZWq95BoB00TAWgIR0CRe851eSjhdX2UKGgGR0BUWSBClabGaAdLlmgIR0CRfUYFqzqsdX2UKGgGR0Bxq5yaNMoMaAdNQgFoCEdAkX19tygf2nV9lChoBkdAcNfFzMibD2gHS+doCEdAkX+UtVaOgnV9lChoBkdAcnVy+Yc/+2gHS/RoCEdAkYAEit7rs3V9lChoBkdAckcXxOLzgGgHTZABaAhHQJGAhlsguAZ1fZQoaAZHQHGbQfZElVtoB00RAWgIR0CRgRxEORT1dX2UKGgGR0BzsgwSJ0nxaAdNQgFoCEdAkYErU9ZA6nV9lChoBkdATTEFOfukUWgHS6NoCEdAkYGdLlFMI3V9lChoBkdAcbYijL0SRWgHTQQBaAhHQJGBstmL9/B1fZQoaAZHQGyVSrPt2LZoB0v1aAhHQJGBzxVhkRV1fZQoaAZHQHFVUyYXwb5oB00iAWgIR0CRhDDQ7cO9dX2UKGgGR0BxzP3TNMXaaAdL72gIR0CRhFY0l7dBdX2UKGgGR0BynM0oBq9HaAdL32gIR0CRhJ0gbIcSdX2UKGgGR0BxzKJiy6czaAdNIgFoCEdAkYT+df9gnnV9lChoBkdAchpOuaF23mgHTQEBaAhHQJGGwer+5vt1fZQoaAZHQHKeWXXyy2RoB00LAWgIR0CRhvlpoK2KdX2UKGgGR0BF3QY+B6KMaAdL0mgIR0CRmj3xnWaudX2UKGgGR0ByU/qC6H0saAdL6mgIR0CRmnC/47A+dX2UKGgGR0A7Sn/DLr5ZaAdLb2gIR0CRmm9ORDCxdX2UKGgGR0Bw5UGbCrLhaAdNBgFoCEdAkZrIDxLCenV9lChoBkdAcJgRArxy4mgHTTgBaAhHQJGb27EpAlh1fZQoaAZHQG4Xn93r2QJoB00eAWgIR0CRnEA9mpVCdX2UKGgGR0BwDVYW+GoKaAdNFwFoCEdAkZx9L+PzWnV9lChoBkdAcIU5avA442gHS+toCEdAkZ2xqCYkV3V9lChoBkdAVoVCPZIxxmgHTegDaAhHQJGeP9CNS611fZQoaAZHQHIp+yiVSoBoB00FAWgIR0CRntS8J2MbdX2UKGgGR0ByWjWe6I3zaAdNEgFoCEdAkZ75kwvg33V9lChoBkdAT2bviLl3hWgHS7FoCEdAkZ/yB9TgmHV9lChoBkdAUA77sOXmeWgHS7JoCEdAkZ/3pr1ui3V9lChoBkdAbZOg7o0Q9WgHTVQDaAhHQJGf87wKBup1fZQoaAZHQHJKF/+bVjJoB0vlaAhHQJGgA/FBIFx1fZQoaAZHQHCtuCGvfTFoB03JAWgIR0CRoeLq2SdOdX2UKGgGR0By/SL3sXzlaAdNBQFoCEdAkaIso6S1V3V9lChoBkdAbgpYywfQr2gHS/BoCEdAkaLzGHYYi3V9lChoBkdAQD5D1GsmwGgHS5VoCEdAkaM2W6bvw3V9lChoBkdAcbiG4qgAZWgHTR4BaAhHQJGjWwmmce91fZQoaAZHQHLAQ4wRGtpoB02DAWgIR0CRpGPWhAW0dX2UKGgGR0BseHOB19v1aAdNbAJoCEdAkaUwLJCBw3V9lChoBkdAcd+vWH1vl2gHTS4BaAhHQJGlUtg8bJh1fZQoaAZHQHMM36hxo7FoB0v/aAhHQJGlnHPu5SZ1fZQoaAZHQHI9vPPcBU9oB00PAWgIR0CRpr3C9AX3dX2UKGgGR0ByHqyNXHR1aAdL7GgIR0CRpvk30f5ldX2UKGgGR0Bw5oTJyQxOaAdL9WgIR0CRpzDKYAsDdX2UKGgGR0BwnHtpmEoOaAdL+2gIR0CRp1m/FirldX2UKGgGR0ByC715B1LbaAdL4GgIR0CRqGybhFVldX2UKGgGR0ByHqJ9AooeaAdNKgFoCEdAkaiqpkwvg3V9lChoBkdAcjCehwl0HWgHTdEBaAhHQJGqa/Glyip1fZQoaAZHQG6LEadc0LtoB0vsaAhHQJGqxw84gih1fZQoaAZHQHEHW/BWPtFoB0v1aAhHQJGqyAI6bON1fZQoaAZHQHISv1UVBUtoB0v9aAhHQJGrjWNFSbZ1fZQoaAZHQHLO+hsZYPpoB00nAWgIR0CRq5ccU/OddX2UKGgGR0Byz3UExIrfaAdL8mgIR0CRrGRrJr+HdX2UKGgGR0By05I5HVgAaAdL9mgIR0CRrYMspXp4dX2UKGgGR0BxDQht+CsfaAdNAQFoCEdAka4YSDh99nV9lChoBkdAcGrjxkNF0GgHS+1oCEdAka+31J17pnV9lChoBkdAcPJyMUAT7GgHS/xoCEdAkbALc45tFnV9lChoBkdAcW2k0Jng52gHS/ZoCEdAkbBPXsgMdHV9lChoBkdAT7eKfnOjZmgHS6NoCEdAkbCXi3ocJnV9lChoBkdAceO+mFaje2gHTVMCaAhHQJGxCTLW7OF1fZQoaAZHQHIFDr3TNMZoB009AWgIR0CRskgzxgAqdX2UKGgGR0BxlDRXwLE2aAdL/2gIR0CRsnpvP1L8dX2UKGgGR0BxzWtRvWH2aAdL3GgIR0CRtBHkLhJidX2UKGgGR0Bvv9eKKpDNaAdL+mgIR0CRtFn4fwI/dX2UKGgGR0BwIWxA0KqoaAdL52gIR0CRtHT+NtIkdX2UKGgGR0BxPXmNipeeaAdNRgFoCEdAkbUCT6i0wHV9lChoBkdAciBvq1PWQWgHTTIBaAhHQJG2SYVqN6x1fZQoaAZHQHIDyEUTL4hoB00FAWgIR0CRtk7eEZivdX2UKGgGR0BvBNkBjnV5aAdNCAFoCEdAkbfKdUbT+nV9lChoBkdAcwvdFvybx2gHTQQBaAhHQJG45huwX691fZQoaAZHQHLwpL/S6UdoB0v3aAhHQJG5lusLfDV1fZQoaAZHQHMWxP420iRoB00VAWgIR0CRubQD3dsSdX2UKGgGR0BtfKJGe+VUaAdNFQFoCEdAkbnqFM7EHnV9lChoBkdAcPzPOIInjWgHS/BoCEdAkbqMAq/dqXV9lChoBkdAcLI71Iy0r2gHTXQBaAhHQJG6wODrZ8N1fZQoaAZHQHD1PjGT9sJoB00BAWgIR0CRuugdOqNqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82d03adfc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82d03ae050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82d03ae0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82d03ae170>", "_build": "<function ActorCriticPolicy._build at 0x7f82d03ae200>", "forward": "<function ActorCriticPolicy.forward at 0x7f82d03ae290>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82d03ae320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82d03ae3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f82d03ae440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82d03ae4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82d03ae560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82d03ae5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f82d054ea00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10485760, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716397405644484232, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdkAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAQAAAAAAAADM5IjwUrtq4Ms9aOj6hnzZtYpk7kG2DuQAAgD8AAIA/AEuWvOyZ8rmsvac67xCxNVq5l7v+s8G5AACAPwAAgD8zq167Cr0su7fzi7xwIYQ79CcqvGK7hjwAAIA/AACAP82gzLv2cCm6U6ncusTcGTXb1Qy7WRwAOgAAgD8AAIA/+sZJvp4YFD/vSS8+jdQHv6ItoL7a6I69AAAAAAAAAADNV5G89uQwumL7hLq7+5A3Di1aO8YKBbcAAIA/AACAP83QmLz2vHC6mT6gOgk4mrT0xbW5R/u3uQAAgD8AAIA/E2wiPiZzpj5aScG+D1vjvty/kLyM5BC+AAAAAAAAAADNc0q9bMTAuyS4rzwEuKE8lRMMvek5iD0AAIA/AACAP7O0d709eg25XU+pPJ+2ED3GJ1G5IlWAPAAAgD8AAIA/M/uFvClwc7ozy868MlqeOwAVDjwG/Yo8AACAPwAAgD/NQMs7KQg2uhodHzo1bx012/DHuTVDOLkAAIA/AACAPwD8szwDrGG8Fu1zuxcWKz08X90934AGvgAAgD8AAIA/Zj42vW2aLj4r9vo8c7HYvjXKh716jW29AAAAAAAAAAAzm0E7XMttup0+mrYi/XCxvfp8ujvRsjUAAIA/AACAPzMrfzx7cI26KXZCO2RDh7V3Hn+7InaAtAAAgD8AAIA/pqyMPRvG9j449du9pjofvy6Snj1KSSy+AAAAAAAAAAAzB487j850uvqUCToLYL20pwpNO0jHHLkAAIA/AACAP5qnATwpKHC6ahyVOf1/ULYKXgU66gqtuAAAgD8AAIA/MwVBvI8eK7osARg8H9ygtpUvhjpHIZq1AACAPwAAgD8zwCs9SJudupW8PrvWvZ437WjKutchDToAAIA/AACAP2YmBDpxvXa55gyVO+aNJDY7Ndi7MMWuugAAgD8AAIA/ZiAkPTtq/j3+QCa+X82OvqY1mL0K9h+9AAAAAAAAAAAArmg8ru+Nuisxizv17F224VgYu+77nboAAIA/AACAPzMk5LzhlLa6qMRfune3grb0Yxu6c8R/OQAAgD8AAIA/ZuonvXtihrqeF1E7ZmpeNaHtPLsIAXS6AACAPwAAgD/NMfy8UqDBuTopxLvvsBI4FkBSu1KXMrcAAIA/AACAPwDdqbxS4MO5mvGuORoFRLQLUoO6aFDOuAAAgD8AAIA/zZiyPPY4PbpL+m46ml9dtPEUgLuu1Iq5AACAPwAAgD8An5U8FPCGumRIOLsZ+cq4fgoDumUZUzoAAIA/AACAP800AL2P5hG6Wk2DuStAmbM3glo6KDeXOAAAgD8AAIA/mj3uPA9AbT0esEi+Jpl4vn5EJr4mRDG9AAAAAAAAAAAzWKw8KTReuiGaObp3FJy1/Ls1OyYKVDkAAIA/AACAP2bWBTz2hEu6Gghauvf3CzbxkrK6UmWAOQAAgD8AAIA/M2EYvPacIbq4s3Y4vH8gsdmpw7njT5C3AACAPwAAgD+zpxA94YaCum6R1bef+YSzrHclO2678jYAAIA/AACAPzM3UjxcSzy6TkaFO8M9jjh0Ksu6MEhquQAAgD8AAIA/s9YQPUghkLgeuSA8H7LxPK7hGLtvDBM8AACAPwAAgD+AtlS9e8GNP/ZxEr4BgDa/XfF1vXwapLwAAAAAAAAAAAY5Dr5nNJM/DjzjvjL76r7403C+XeJSvgAAAAAAAAAAmu3uu8OFJDnbPN+5G2HDuKLzTbvWLg85AACAPwAAgD+avbC7FKyLurdgjrep3t6yNQKjOtzroDYAAIA/AACAPwDLhTwpGGu6LHYONjlAmTGVMkg6JLQntQAAgD8AAIA/s3URPTOKrz8Gnvc+Dxapvsngh7xlIWw9AAAAAAAAAABaUcw9eAG/P+HrAz/J0dq845fKPSLfeD4AAAAAAAAAAM0oT7z2dHC6TjqIOZ7miTNUDPq5x7mbuAAAgD8AAIA/AJ0cvUhrmrpPJ5I7mm28NPfNtLrBG6m6AACAPwAAgD8AfL879pAYurYXpTsiSDg10a1ouzH8sroAAIA/AACAPzODljzeU78/eYSpPa9pib0j/ew8S4tyPQAAAAAAAAAAZsp8PFxTfLo+23Q6k80MtXn1yLkcy4u5AACAPwAAgD8a3KS9XOsEO3NUYD56AWu+K3iBO46ESz0AAAAAAAAAAACzBr1ccy+63GMqOVsNh7Y4FMU5cu9AuAAAgD8AAIA/GsxYPSlANLquDOS8n0CnNRIdOru6MhG1AACAPwAAgD+aWME8XGs3uuhZeDk8WVI0K1ZPusH9jLgAAIA/AACAP7N9Ub2Pnhe6qpcCO+KoPbbkbtm3CpM2tQAAgD8AAIA/M6XmPGGnyz6IkEU9Lgzgvr7HRj1olZA9AAAAAAAAAAAA5Qm9Kag7uvYal7rhvYW2OFK4OdKrrjkAAIA/AACAP5oWVz3DyQK6T+aYulUCMDRyc6a65KOzOQAAgD8AAIA/0x0SvnfWGz+XKhy8trf4vgMp8r04cbs8AAAAAAAAAAAtUSE+pjSyPwdmyT5pE7y+eoGGPuYEbz4AAAAAAAAAAHOSMT4KJo8/VKCKPtDs077d2aM+2tXuPQAAAAAAAAAAzSKdPFyDQ7pjWjQ1LLIPMKnZWThznVa0AACAPwAAgD8aaAs9e3SGukr7SjoLbEw2DRAWuwLSbLkAAIA/AACAPwBH6Lzsmfu5JnqFO6RaZTgRhj87/O0nuQAAgD8AAIA/ZkZDvHumrrrC/Le7C/iePCJhrDvymYy9AACAPwAAgD9AyJs9FhTuPo4dc70H++i+t4bpPTs/BL4AAAAAAAAAADMT67t7FJi6XZiQuhE2fDRGMQe7I0KkOQAAgD8AAIA/M/dsPV/dyDzfJhi+w4UmvtQbhb4KJT4/AACAPwAAAACgODO+h1BNPhkKlT6gwra+TwqOPAEvIj4AAAAAAAAAALPJC72PFlG6cifDuvSTZLZe85g6Q0ngOQAAgD8AAIA/APheO64BrLrwg+w65SkHvahoOLrVnQI7AAAAAAAAAACaybS8w/Ukumoug7p2PGO3xxIqO+aonTkAAIA/AACAPwCgnrzh9oS6vMMBOxwCMDhTphs792CTuQAAgD8AAIA/MxlFPCm0HboVDTW4S2N3s4O5pTs2bFY3AACAPwAAgD8zazS7j0ZRurIw1zpEeIS0eJhgu4in+rkAAIA/AACAP+YsOz24Dqe5D2Q6OjOcorPKpzO7/tdduQAAgD8AAIA/owZnvulJlT9a0tW+FUfzvtz1r76h4z6+AAAAAAAAAAAznpI8UuCiuQbSkrkLWkG0+aFVu0xwqTgAAIA/AACAP82s67t7/vi6+NUUuipWXDuOK0Y7fjodPQAAgD8AAIA/gK0BvfawSbqR85m3VAons2tWpTsx9rE2AACAPwAAgD+WyZ2+RwkaPz2jMb7JoDu/ZDbuvgiTYz0AAAAAAAAAAEChLz7sdC0/U5CPvqeACr+/O+c8ppXsvQAAAAAAAAAA5m9vvY/WSLr5vi44htJINs1M4LoS81O3AACAPwAAgD9mSdE8KQQHunITk7x6XDW50XEbu4J2pjgAAIA/AACAPwCAjbmuDYW69uBsuACUALP6Tww6YrSHNwAAgD8AAIA/mqWDvMMhXLqeTSQ4ZnDAMrqfkLpMnjm3AACAPwAAgD8zKzW9Ueu3P1LaN78xQAA+xRrcPFNrsbsAAAAAAAAAADONKrzXIwe5Ii4cuqTPNLUwyp870aE/OQAAgD8AAIA/M38gvFxPL7rhXrI7/IUitlXvnLuyMc+6AACAPwAAgD8a01K9XGsZukgJHLrcSgy1YAOrOiBEMjkAAIA/AACAP82E9jygy7M/av/7PTXpor5VElU9Fi4yPQAAAAAAAAAAZqBKPIXLmrmVrJq8UOLStH7QDDujDkc0AACAPwAAgD9mV/a8KTBHuuvbzjoJi4C1q1aLu8XK7rkAAIA/AACAP5qLX73DaTi6dlnhOEsYyzPlnYo6ok0DuAAAgD8AAIA/zciWvI9WcbqcsL+7B4L8N73aPjtwBDC3AACAPwAAgD8AwKk5uBa9uS0i2Drv6wK0+ZXOuysd/7kAAIA/AACAPwvrjr4iAYY/lbbbvkyGBb8QR+C+QRaSvQAAAAAAAAAAzUoNvKRAeblnRxw718e/u7KVWzs2uJc7AAAAAAAAAADAJoA9j7Z3ujptkLsKkea29rhQO3sfpToAAIA/AACAPzP0jL3DtX+4etgiuXCJkrUre5G7uBVBOAAAgD8AAIA/BauwvqqPGD9KaoI9MBjsvlofqb4ANtQ9AAAAAAAAAADNYI+89ihiuqPSUDrA0wg2IC7quv1QbLkAAIA/AACAPzOz2Dr25DO6Spant7esILKlsii6RdS/NgAAgD8AAIA/zQx7PewOOT9nyQ89SZ0RvwW0vz2GReY8AAAAAAAAAADNIjw84ZSMumCl4zqrI/U0WU/humRuAboAAIA/AACAPwDpgLz20HS6rpGku95Fi7UGqRG7vay9OgAAgD8AAIA/zWYAPD0adrmLndQ5cOcMNe0kSTu1U/i4AACAPwAAgD9mfpO84cSGuipfLLpzfWi21oR2uCWPRjkAAIA/AACAPwCgJroUSre6/R6BPAIdFb3ZLai75hcCvgAAAAAAAIA/E6vAvll9Yj+2Yzu+kaQbv0ELvb61v/28AAAAAAAAAACaRcc8FC7QuBuqxDvl8TA7mz9oO534GDwAAIA/AACAPzO3hTwp3AS6FSpOu4PFUzh8fTY74s7jOQAAgD8AAIA/M4tsu8PZf7p7cX86AGWNM+OkgjrZwpK5AACAPwAAgD9NkFS9KbQQPeLv0j3WbX++UFexvAjpYj0AAAAAAAAAAJrxbrv2DBK6s2djO12TCzgjajG6MgEWugAAgD8AAIA/AFiFu8PlCrrG59u6yeXbtdKA9ToKtv85AACAPwAAgD9NERk9wx0wuojAmLsermA49mIDO2DZkzgAAIA/AACAP3Obi71cu0q6nqOfO9QGjziTBbm6Mq7iuAAAgD8AAIA/s3JVPcN5drrVoJk7iRZ7tf9yADqkBq+6AACAPwAAgD8NUoK9SLuPumpp8TkctLo0NKKguWIYCbkAAIA/AACAP2Z/Cr24Dp86UakavF4LhryThYG8RY2OvQAAAAAAAAAA5hUHvaScczrQYey8a914PPNuzjq1lVS8AAAAAAAAAACaLt28j4ZiuoDGNbspXVK2U6s6uz3wUDoAAIA/AACAPwByAD32qAy6iNW7O+75TDhVjug63n8yuAAAgD8AAIA/QCfRPfYUcLpLy2g7MJ1MOJOan7qYygm5AACAPwAAgD+aBz4+YUOQP2dqKz5NhA+/VILEPrBpzL0AAAAAAAAAAJoJ5LvDeTq6yxjcNiIaKzI1MZs6+rf7tQAAgD8AAIA/mnmEvCkAWbo47885jvx7NmQOv7pWFPC4AACAPwAAgD9m/Am99qw+un23HzvPkSK5HSBguPpvNroAAIA/AACAPzOtsDyPPhe6epm6O8fZFDk20qc6gCFlugAAgD8AAIA/ZnDxPCmIebpKA206mhRQNeQKsbqLloq5AACAPwAAgD+zdVa99gxLukqOSbo2HMu1gP6CuoINajkAAIA/AACAP2YuAr2PGlC6bks1OLMzubI9ceu6gIVQtwAAgD8AAIA/M41mPPYoHbrt3p+6MRRDtj9KNDskwbk5AACAPwAAgD/NKgW8XKMXutUi27oexz21jX2ZOrYkAToAAIA/AACAP5odD7z2OHy6UOpjOJpb1DFdehS7kz+DtwAAgD8AAIA/mqFfvOFUjbq94tE4fxkHNGfaTzq1f+23AACAPwAAgD8AjO+8Kfw+us0V/LjuNnc0AfAAu75LETgAAIA/AACAP+ZDUD0PSTu8Kjp3vSxXwTyNfqk9u8ucvQAAgD8AAIA/zdRUu/YEMrpvBpKzr/pdrAPqh7rTVsAzAACAPwAAgD8zhQu8j2YZuuDhq7uBAD04ZfCoum1vILYAAIA/AACAP/PSGT6pFaw+AnubvlZb2r42egu9eoTVvQAAAAAAAAAAAGwTPPbEHbqWP4U66zAFNcVqfjoLVZi5AACAPwAAgD8Ak4+89nxHutoTjTlNPWgzY6K+uMZXorgAAIA/AACAP2b4Ej1Iede6DtgnvEEBT7y5xnG7jRw1vQAAgD8AAIA/M6ADvSmQFLpQDKQ6HO6/tfWlabpCasi0AACAPwAAgD8AANc6w0lDugz8sjfkgSozMVCpOU06zbYAAIA/AACAPwCf9r2NKzI+D4/IPtGdmr7YY549XFM6PgAAAAAAAAAAmjU5vI++WrqetNG6Zj+JtvY5ILrjiPs1AACAPwAAgD8AVNq8XAMwuq52EreVJMGx6ETnOVlZJzYAAIA/AACAPzOkpzwKBzG5taqmukTw3bXQazy7v5nDOQAAgD8AAIA/zXDPvLgW9rlGfrC787RPOFc0oblmhpw4AACAPwAAgD9mLr07j0p9uva2prrE8CG1NF8Du1ppwjkAAIA/AACAP83nTb12JTG8xa4mvbSh4L0G5S09ssM7PwAAgD8AAIA/ACCnvHueibpNHY65y7yqtCxtsTpgEKI4AACAPwAAgD8Ayi09RbO8P8HSyT7QnSU+H69/PGYYFT4AAAAAAAAAADMDjLpS0Pq5zXVtuYDWP7S7ltm6miCIOAAAgD8AAIA/AHGcPI/eZ7rvcUu683KYtYYMuzqifGY5AACAPwAAgD8AM6C8rq+RumfoBjnBOZE081cvO2sOGbgAAIA/AACAP5pPNzzsQee5CkZeubMNZ7M2OaG74fiEOAAAgD8AAIA/5l1CPcNderoYZ4654lgWtdvOLzv03aI4AACAPwAAgD9zi7a9bYw/P4Je1L3vuTm/Y7gbvn1PZzsAAAAAAAAAAAAbkTzhqJC6E7gVOAmAeDM3Jtc5tsErtwAAgD8AAIA/zSCkO66FlLruHbw6NhkANriiwzmSu9e5AACAPwAAgD+a/aQ7CncSuRuoKbmepom06x6eO8x5RzgAAIA/AACAP82YJT1ScIi5GfIwub7vBrQgXlO7c95NOAAAgD8AAIA/RioKvuBbAj+r4fM8q53/vsgLJL4JMok9AAAAAAAAAAAADJi87CmuuS7cR7wgI5E8rLCvOls7M7wAAIA/AACAPzPwHr32BFy6lRuTuPo7D7SDTt04BjqpNwAAgD8AAIA/Zub/uq6BpLpuOYU4675TuNtr4LnwO1e3AACAPwAAgD/Nr648j7JWOZaF/LvlVyI9ms3RuiCj07sAAIA/AACAPwC1sjykPCg8fVBcPARMX756m/K8q0rvPQAAAAAAAAAA5umHPfaMZLoEZg67eXMEtoMxyLkSpiY6AACAPwAAgD+av089UnD6uYUVnrZzI2Cxo7RTu6v9tzUAAIA/AACAP5ofTzy4roK545mruhETMbWTOpu7z7HHOQAAgD8AAIA/ZsIVvfa8Z7q2uCo5CRxjNJa1qDqqNke4AACAPwAAgD8z40y79uATugWIFbvulxK3vj/5unAmLDoAAIA/AACAPwBwibpIK6S6JbBYO8qH5DZGQrY6M792ugAAgD8AAIA/msH6vHtKibqFdjy5qz5kNjHlRrsDC1Y4AACAPwAAgD9aBZK9eYuBPmWnRj2D39u+omMgvqQoCj0AAAAAAAAAAJqIOL32dAq6WBJdPAMJwjguC5e7GXnDNwAAgD8AAIA/c90Vvq8Ziz6ldQQ+4QbzvtZY0r3bXRw+AAAAAAAAAAAdGXu+XFd3P8jbTb5GFAK/ZB+rvrr/pLwAAAAAAAAAAIADdj3mqLE/+hYDP2b4Z76C/uk8opk1PgAAAAAAAAAAANw8PIUr17kCpLc7u/6iNYxGpTtNX5w0AACAPwAAgD9td66+1z51P+BB2r330Au/CibIvlDerT0AAAAAAAAAAGa0XLx7trO6fuKpuu/KjbUmkbw4UibCOQAAgD8AAIA/MxmLvT3qVLmCjBa7ElmYtu+ENDtU1A82AACAPwAAgD8zE5k86cUDvEqUPr4Ls+O8UKJaPTZqvz0AAIA/AACAP5pLDLzhXJq6Dh/BuZ4EMTXDR/Y5JqbcOAAAgD8AAIA/AIy2vEixlrq9E4Y6JNB2NTV1Hrv2Hpu5AACAPwAAgD8zmts8j1Y1uqAgpLoA2hs0m+eMu5ttvzkAAIA/AACAP5qbcDxc00S6e2YpvEO8lDUKLBu6ilQFtQAAgD8AAIA/s0FlPVy7YroGcq26i6faNUHRxDoI5MY5AACAPwAAgD+zx1y9hRuTudITgjuLxG+2Hr6Cu7W6abUAAIA/AACAP9qnmT2pbno+diH7vVa2sL7Lo8k8k/B9vQAAAAAAAAAAZgKRu6Q4JLu65ry7xd4NvCDlXby7+fW8AACAPwAAgD9mhrg67KHDuSojhrvzTcm1wicaO4MXnjoAAIA/AACAPwC8xrxIJZK6MArtOdoOrrX6U6Y7upEHuQAAgD8AAIA/mtmCOsNBbLo3/4a7IvxtuKI/F7zb1jo6AACAPwAAgD8AnLs732SJP7s1bDy52mC/YKcbPYPH3jsAAAAAAAAAADN/4TwpoBm6GgCRuftclbQPbcU5bgqnOAAAgD8AAIA/ZtZNPcPhC7oeQEO7/EoMNsygfro4T0s6AACAPwAAgD/NTRu99oRgupYf+Tubqmm3O65lO52sprYAAIA/AACAP5onHjwUaLe63c3Rujfs9rUtjJc5kH7vOQAAgD8AAIA/mkLnvBR+krpa3f06B/KhNa2vLTsvcpA0AACAPwAAgD/mvlq9E+WMP0orxL2jHTa/N75TvVZ2zL0AAAAAAAAAABozBr50tcs9IPhnPjaJsb6fJp49aIelPAAAAAAAAAAAmjqSvPZkF7rZsS24MO2ls8f/c7qkp0g3AACAPwAAgD+aoog9XJscum6fRjpdFWG2k8eBOqYcYbUAAIA/AACAPzOrM71SIJC5y+RxOjPjzjRplok7EGiOuQAAgD8AAIA/M1NNO+Em3LrK+sY8TFBRvRVhabtpNze+AAAAAAAAgD9m/7+89qKSP5LA6b2RVly/LLsdOX0tnbwAAAAAAAAAAJpBnTw9Gk+5IoPbuoRB/rVff8K5xEwBOgAAgD8AAIA/mqW2u3EMIrudzIU861eKPE5obTzGiW69AACAPwAAgD9ziJq9KdgUugf9m7utb7e297DlOCFxszoAAIA/AACAPzP3vzvD+Re6X9VEN7PSXzVXt2S6Y1pqtgAAgD8AAIA/4BUFPmHJp7xWHga+e7ROvQ94/r1yK0O+AACAPwAAgD8zL4S7j3IuugVBZTynvBK3ZKKdOxRPDbYAAIA/AACAP83kPbw9+g65FgyHvL6AAjwgPwQ8PQx/vAAAgD8AAIA/zf44PFyDHLqki8o7R/cANtkRYDs98vg0AACAPwAAgD8zoT88tupbvEpSOL38Pt68xIRiPIDP8T0AAIA/AACAP81DpLz2nGa6atIyuO0YDrMeWz84FaZRNwAAgD8AAIA/zVTSu6QAF7n6mOM7k2U9vMDwxjqSIVo8AAAAAAAAAAAzU808XIM0uhSRqzrzN6s1s1GUue2Fw7kAAIA/AACAPwCw2rvXY1S5+gEqO+oAATxi8wy7dtr6ugAAAAAAAAAAZjsNvfZgD7rmy7W60XRVvG/Q5TqyCjs9AACAPwAAAAAAahm8KUx8uh8/wTea/kOyP9SAuzgv3LYAAIA/AACAP4BsGb3DRB68OoROPWL4JjxTBIa9NhkPPQAAgD8AAIA/AD8UPa4Rirpj3LW25VsWsvRscDqutdA1AACAPwAAgD9m4IA8hSvIufXoJrupEQU3q/9vO+kbAToAAIA/AACAP2Yilzx7NKi4KWW4O/XSOzYuW7E7UlA7NQAAgD8AAIA/Rt0Ivu8GHT/+/zU9eo/4vox1C77yhp49AAAAAAAAAADNwKs8FESWuvbTmzrKh2+206yyuKvltLkAAIA/AACAP3PWy724/KE6skFeNzVCCj0Pfkq8I2XPvQAAAAAAAAAAZtvqvFIwjLk6Zs85jBKYuNktjrpKkOK4AACAPwAAgD+ayOw89nxEumh8+zmSrPQ1i1i5uu5A5jQAAIA/AACAPzOJIDwfPca5elg8OGuwaDOC5a46dnVetwAAgD8AAIA/M9/ZvFwrfbrKkUO6lQ/RtYVDpDouiF45AACAPwAAgD/Njfi97u6vPyXiCb/p3aO+9r/5vXfvk74AAAAAAAAAAJqwuLy49uW5jWElPIAygLxSuKw5g/9SvQAAAAAAAAAAALBpPI++XbofKMS7liuvOBm2lbtye2A6AACAPwAAgD/NZMO81xMmufojojgzfJgyvjRnuyzqvbcAAIA/AACAPzMDZLtSuOu3vUuIOLyjADH7hAy8qdKitwAAgD8AAIA/zUC/u1zTOLrM8Dw7wswlN956jbrZnDG6AACAPwAAgD8APIc7wzVsuNDekDlEfASycBqROqQTr7gAAIA/AACAP5oF8jspNA26rqHZOsmzCrdguyg7iur7uQAAgD8AAIA/M/3qPIXbhLmStQs476aCM79JJbvwRCS3AACAPwAAgD+aScG6KcxbOUvegzos98o1KIIdOjF9nrkAAIA/AACAP3M+sr2yvRk+4xepPgwejb5ZKK09ehqoPQAAAAAAAAAAc5iLPZKgjjweVrK+TtCgvnFAUr5YRQW8AACAPwAAAAAzH5M7XEs2uuX/8boisGK2Z6vWurAtDDoAAIA/AACAP+aNOb3DeWq6wvovuTJBj7T9Xg06a+xOOAAAgD8AAIA/ms3svPaATLpQBJa59CYdtcZ1Jjsera04AACAPwAAgD8zXro8KQR2uhX03boKBeW8+l3+OsQnyD0AAIA/AAAAACaMoD2bd4S8DoB+vZwTOD1yqYU9NmlgvQAAgD8AAAAAM7NhPHvCibrIFve4ytk2tOZ8BriSTQ44AACAPwAAgD/NnDs8UlDGuXLq1TrVY7o1aYHSuRCf+LkAAIA/AACAP40Thz0pUA+62ufuujPEV7bihNG6gTYNOgAAgD8AAIA/Zv+WPPZMRLpSnpA7gYDgtEVW/rl9YuWzAACAPwAAgD+AkwG9XJsWuqIva7uMf1o4ZLRdOsz0AToAAIA/AACAPybclL3DgQ66kkGcuoJZsrVOEW+6ouuzOQAAgD8AAIA/zZvfPI8OWbo+hem6gn72te3JQTpOuwQ6AACAPwAAgD+aH7a8uL7NOGWnkjrgPrI1SzVTu7MRrrkAAIA/AACAP4CYNj0peDu6uQKZOh0xBDahu4w7ltmxuQAAgD8AAIA/GlJyvRRot7rOK1Q74tEBO27N5LnuCBY8AACAPwAAgD9AlZu9KXBAuhWPzLl+r3w1/oN/uutx5zgAAIA/AACAP+BfP755wPc+PhetPREP3L4wvia+l7oTPgAAAAAAAAAAM19LvFwvCrqQ7e46MSYYNmSBajvSWQm6AACAPwAAgD/Nm9K84ZiUujgelbr1fMQ1kTvPOmL2MLUAAIA/AACAP806Kj3sScS5rZpYt6ISmzENJsW7e/J9NgAAgD8AAIA/MwVEPgL5gD/2VPY9J0YLv1c8uz75tAu+AAAAAAAAAADNK/g89oBhumvBs7vkjjY4+rX5Op4kubYAAIA/AACAPwAh2Txcu3q68hjVumQZ7jOHS1g6Uui6swAAgD8AAIA/MzNzPFLwvLko7AM8PxgJtX1FxLkOLgK0AACAPwAAgD8acha9XJsiurJoOLzvmD+2Sl7RuQCcrjUAAIA/AACAPzMnujyFC844i7/wOlXRjjTuzF05nhYRugAAgD8AAIA/M3l7PLiGxblgKUA8ZGYWPP6EpbmhUyU8AACAPwAAgD8zFVO8jy4tujb/qbtTZEA4CH1WufNIwDcAAIA/AACAP5pH4zyce2W8sB/nvPf+2TzNtcm9cp2tPQAAgD8AAIA/TbYqvRQokbq2eVu7nkMkOAxLubq1zfw5AACAPwAAgD8AKrc8H43EuRgpejZswoUxfbyBOmZHl7UAAIA/AACAPzPNFL0fLaO58gWOOmrKlTXze0i6PUqluQAAgD8AAIA/urQ5Pv/P2D4+CcK+X8sUvx4tN7zTb+e9AAAAAAAAAABmtso8wz0uumIVWjxjjvm8gbR2u7562r0AAAAAAACAPwChvjzDQXK6CMLUOuaZCDXt6aO6kH/wuQAAgD8AAIA/AOTDPMO5MLoOrwA7SUpRtvawobph0RO6AACAPwAAgD+aHMA89rxDuhKGijirEHsyM+ujOVK+obcAAIA/AACAP2Yc5Dx5q2o+AwwLPSq/575OJis78LHaPAAAAAAAAAAA5p44PVyXerrjp006KWdANR3IBjvLgHC5AACAPwAAgD8z4ZK84Q6RumiA6DknshM1MOoeO6ETBrkAAIA/AACAP02sBz20ff891ujmvRLXkr6d2fK9RrhTvQAAAAAAAAAAABB3PMMJWboti/E40RSZtiv3aDohDQe4AACAPwAAgD9mNC68w5ETuv3ZMTxpqki2omyrOgkZQ7UAAIA/AACAP2b2nrq4Nty5GNK3tvdshLELMvq5EGzYNQAAgD8AAIA/mv0vPfY8ObqYoa05D2OZtgO7pbnICsa4AACAPwAAgD/N/ng89sRlui1zbboEz4y2HW+eOhgzhzkAAIA/AACAP5rt+bzD2WG6hLGlunpOp7VFLYc6Lo+9OQAAgD8AAIA/Zs5cO8NJZ7oITZi6vJiWNnHuTrtbZa45AACAPwAAgD+mO8s9uQ0cP8ub1L1S+ye/L4YlPggJXL4AAAAAAAAAAGZSEz0pqDK6njOAOg29e7ZI0Iy6t8CWuQAAgD8AAIA/AAKEvEhvgbr4Ub67GgQMOEnojDr4SH+3AACAPwAAgD/NtY88H32buXa8lDpTbr82FoFrOgWSrrkAAIA/AACAP4DFCb327Dq6FsoLOynpmblZeVc6MEMYugAAgD8AAIA/TXZGPVzvLrq9GBe6ESwQOZe1FTuyXx05AACAPwAAgD/NShe9rl2GunIaSTqcG6c1i/1kO5IOZ7kAAIA/AACAPwDIGrtIoaE5F7a5PFu6WzwZCjc7JBUOvQAAAAAAAAAATcabvR+FtThikVI8xddwPIp5/LrNSQE8AACAPwAAAABNxwy99hxEulZso7jVDQ22+WGHOvhwvDcAAIA/AACAP5pLRbxSSOC5ALmLuqCEKbY2ISU7ly+kOQAAgD8AAIA/AHTVuylgFLrgsI87TRPANZvTvbqOLKW6AACAPwAAgD8zlDK99uBtukrhgTsBYkQ4mvb+uqwagbgAAIA/AACAPwB4QztSGNG5NgJeOnclVDanMwc7NSSDuQAAgD8AAIA/M4WnvBTQo7qdaoYzXK8gMCYhuDp6c8SzAACAPwAAgD9m97U80urJu44VkzmZ9Ti7gg8iPbqr2DsAAIA/AACAP62MCr40aOM92wiGPguPyb5lPLs759ewPQAAAAAAAAAAZvJmPOyJzLmGF9U7R9zJPMXternJqa29AACAPwAAgD8a8jG9jwZJuqrdlTyWz8Q06p9TuwHmtDMAAIA/AACAP80VrrzhZoG6r2MQO/6cyrpdZsK7IoMyuwAAgD8AAIA/zYbxPMMVJrrDdym3WZiFsu8Xnju+aUk2AACAPwAAgD8AYsg9vtGOPwz6AD4W5iC/0b5IPpAKAjwAAAAAAAAAADNNOzwphCy6S/Uou7f4aLugQjC7WuE9vAAAgD8AAIA/zdo8PCk0VbpdTa47chcpOH1mE7vCicS2AACAPwAAgD+aAfi9fRn7PiQENj0TfAq/waw1vq57lr0AAAAAAAAAAM1Fpbxcj3I1K8iNOiOsyTX1b5W63mCnuQAAgD8AAIA/GkaevUMACT33zJQ+4BPLvppJFj7QIdg9AAAAAAAAAAAzSoO9exiLupkttDpligC16JweO7335rMAAIA/AACAP80spjqPNh+6diiKuzLIhzifNok7L1sCOgAAgD8AAIA/zczbOCnwEbpOR888/amrvMFXTzrpypW9AAAAAAAAgD9m+h29j+oKuh3Sa7xOAPg1VKR2u3NBYbUAAIA/AACAP01hRb1cezy68+/2N5xrITP+ulK6jhMOtwAAgD8AAIA/zc6pPOFwhrqtQG45i+U9NIBX0LrWD4m4AACAPwAAgD/6rAm+VDj8PiWUZD3G4hK/MOe0vebgFz0AAAAAAAAAAM0igjxSaKK591Yqu9586bX2dXG77ElHOgAAgD8AAIA/Zj6SvB9V9rnu6ZQ3b3TuMpDH7LrjxKu2AACAPwAAgD8zPRi9H733uSUAFTvZQwo2XgZdOjIMCjUAAIA/AACAPwAYiLspYBG6LsMwvCcEwDyEj7u5NgTpuwAAgD8AAIA/GpIhPSCpgj9mZcA8ZREkv4pUMT5STr89AAAAAAAAAACaEdS7CmcfuUCZMDrX/km1dKxZO1DaT7kAAIA/AACAP2a2cDwK9wG57Y+iuwUSzzjsvjM7E5dDuAAAgD8AAIA/AE98PbgOobnmSJ44TEM6NpQ3BLs7dbq3AACAPwAAAACacum8rj+iOQodXrx/GC48r8+MO4ADJD0AAAAAAAAAALPyKL32oDW6tU53O5UDTzgUISW7S1AZugAAgD8AAIA/ZjLNvFzHXLpr44a7jnEDNxvGe7t+SZw6AACAPwAAgD967RW+KVodvE5xPzvcqDs59Ul+PYKve7oAAIA/AACAP2ZvxDxIbYO6ivMXOgGhlDV7AJs7nJCXNAAAgD8AAIA/AB/iPIWL2zhINcg6yQnyN0otzboQAni5AACAPwAAgD+zfws9XANRugITkDnVnyQ1PSyMO/oLprgAAIA/AACAP2agjD325Ce6HDA7u1ktBjh4tOK6BifYOQAAgD8AAIA/5moePY+mDLpGV2S3VumpslHNMzrK6oQ2AACAPwAAgD8zHPM8jwZhul7WiLsOYhU4qGzBOKsvsTcAAIA/AACAP2bE4LwpUAC6/4KguiSFDbbwema7ovu8OQAAgD8AAIA/mlHcu4+efbqjPvA4lSn1M6x/bjpBgwi4AACAPwAAgD+aidS74cy0un96QDuJU+u1+jR8ujaGXLoAAIA/AACAP5oR47wfLce5jpdhud5rOrQfTUG7uT6BOAAAgD8AAIA/AHhtuzyRDz0Dzb09Ticpvtvhjj1FP8w9AAAAAAAAAAAzG228XEszuk9cQbpPJ8q1W4urOlpKXjkAAIA/AACAP+2fk74XQ14/g5sCPJ1kCr/Hlqi+5YYCPgAAAAAAAAAAZjuWvI96BbreJLa6QCfVtT81Mjvl5NM5AACAPwAAgD8AEGO8w1Eyuh5q9LsnIVw1epxQuiJixbQAAIA/AACAP5rb6TzswY650ucJPFE0eLOCNZw7GqiorwAAgD8AAIA/AFIkvfaUFLoHuL05VSBFs683lruwH9y4AACAPwAAgD+aa4o8j7YmuvU1ObnO0kI2MplIuvppUTgAAIA/AACAP0DXgL3PIkA9d64LPuXDgb4NL6A9ge6WPQAAAAAAAAAAZssnvcPpVLo2h0I6ngKANH9L2boTgFy5AACAPwAAgD8aBCI99gQIul0N9rrGo88313Rmu4HaojkAAIA/AACAP2ZHzzxcwxi6bjeQuVwYurQXnQ46QfunOAAAgD8AAIA/oMk9vtCdUD/ST0+897ACv4VgXL5d1q48AAAAAAAAAADNkP07wzl0uj+cOjpuGxO3gRTKutraVLkAAIA/AACAP3P0Ur5+h74+w7SAPu7Kwr5xljq9w93gPQAAAAAAAAAANqiOPsWwDz84v5w9rxIjv3Ri9T7m1Ga+AAAAAAAAAACA0gm9UtjqODt4Zjx+5jC6GemgOkNRJTwAAAAAAAAAAJrBG7vtqak/DeqgvMlP5763/+K68BZaOwAAAAAAAAAAmrjhvMNdWbpFFXy5Qr0ZtOEtH7sua5A4AACAPwAAgD+apOm8wykquvqBDDqRyoS3VBtrOne1IbkAAIA/AACAP4D2Ur0fMca7v2esPHeGCTx0Kl09ro70vAAAgD8AAIA/M5MXujHCLz78vjE9gdmUvkD8PL0Kh6O8AAAAAAAAAACa5Lm8z/CtPxrdwb0RiMi+UbdlOxFNEDsAAAAAAAAAAGZqsDuPNna6ZsOQNwAauzCUz2+6xwuntgAAgD8AAIA/mnzbPFxjHrrLQpE6Gy5HNo7qqjp8pKu5AACAPwAAgD+aZeC74VSHuuK0Xjv0wog4rBOFOkeIBLoAAIA/AACAPwBfl7x7EIG6YSHKOtkWbjVdPem6dllXNAAAgD8AAIA/Guw+vcNZIboIU+06wqk1OHEOVLs1Z4y5AACAPwAAgD+aWii90qvtu9Xx+rtxFsI8JYNnPVyNoL0AAIA/AACAP2ZmqrcUYuq6zkHuOsJ43rzfBKi7o0TCvQAAgD8AAIA/zZ5PvFzPNri2qD47cskYO6pcVjvKNQM7AAAAAAAAAAAAL5C8ro+TutulQLtikVm2gozyuqArXzoAAIA/AACAPwA0eDy4zqS5CZHKu7/HTTygNzU77butuwAAgD8AAIA/TThNPfaYK7oZJse6rMEKtnZdfzsGLes5AACAPwAAgD+aRaa8wxEGuuI567pERmW1kkrOuj7fBzoAAIA/AACAP+3uMr62S4k/+CZ2vneiD78i7FC+jdXuvQAAAAAAAAAAgL6vPfxHRD+53Dc8DNAbvxcyMz4zVna9AAAAAAAAAAAANGU9/DcUPvFeGb5HLJa+sH6MvWBgw7wAAAAAAAAAAM0ByzwpgEu6OuaoMxsyUq5wTkA65XO6swAAgD8AAIA/gCEDPVw3Ebp4fSS6iTzHtZi51jui8z85AACAPwAAgD8AQLS5SMHyuB4k4Tvc6Gq846H0uQv7ODwAAAAAAAAAAObPGz1cQwW6M2+uu1ChlrXmXLy6qJMJNQAAgD8AAIA/AFTyvKQQFrnSCFY4AHJUsvifg7v4en63AACAPwAAgD8As4+8PZoXuZ9+ybpQ4Jy4vaOBOnL68zkAAIA/AACAP5qVQrwpCAy6XtV5OfMS3TTwwJI7iReRuAAAgD8AAIA/4G42PmEgMD8GTmm+I3wCv3KiDT4wgja+AAAAAAAAAAAA7iW87MnpuatO1zr5tx02B0hYu5It/bkAAIA/AACAPzPrGLxcfwo5KpafOiSh0jWzekA7/4m/uQAAgD8AAIA/zZoIPYSEGD57XLu9PpuivhDxb7100Re9AAAAAAAAAADNxGY8KZB6ut5zjLlP7/C0hfmtOjNMnjgAAIA/AACAP+Y7Rb1Im526Ow94OUnHWbcc4sA6V30RuAAAgD8AAIA/M6fnvL3fqD/rHjO+9azmvozPazvgIUO9AAAAAAAAAAAAmq08hfO0uT4tiDrM/MU1XNw4O3cWoLkAAIA/AACAP5pdJTyFM425ejGdu0622Te4xVu7HtsstwAAgD8AAIA/M3kzvMNZdbqY0w+6+ykCtuOHqzrCayM5AACAPwAAgD+aP4C9KWB0uh0Mjjv0bt82fqdaOxY1pboAAIA/AACAPwAt+zzDaWW6clUzuQlirLMtUWm5jmpNOAAAgD8AAIA/rd5gPsVpDz9kJ5G+G8sKv5L4Lz62Hnm+AAAAAAAAAABm6Aa9SN2IuqT3ATzpawc8jh50uxKk6zwAAIA/AACAP2aiojvsae+5s0Tguh2WCrYNv1+6NbMAOgAAgD8AAIA/M4+/PCn4aboq+Cm7e+ETOGlPXjvBOMQ5AACAPwAAgD9mOcA8KaR1usGTiDlzG1y094cVO7K9m7gAAIA/AACAPzPj+rtVzLg/yT+ivbEJZj18Y8Y8uI2cPAAAAAAAAAAAmtnFO6RYYDqazO67/071u0S0c7xIONQ8AACAPwAAAACa2c27uLbsuRSpO7rbuZI10PUOOmZGDLUAAIA/AACAP80UUzuPjga6Wy6IO3dfzLVWXD240H6dugAAgD8AAIA/ZppOPAW4iLuEIZS8MJ6evE/mD73iUIe9AACAPwAAgD/mWka9KWhvupMWzDsyIuq2oJugOSWW3rUAAIA/AACAP5qhNTxcKzK6jviYOzP95jdvw9q6BCqFNgAAgD8AAIA/DQX9vdK6Oz6j3YU+QcPUvgWgxTyK8lI9AAAAAAAAAAAG0wU+tc28PxPGKT9+64m9xmOuPWkvpz4AAAAAAAAAAMAb+j3qLj0+guqBvuQ7rL4iPLu8iP6OvAAAAAAAAAAAAPfZPCkCS7wqtRm+AE7Tvcfxdj22tBU/AACAPwAAgD8AgNi7e3SSujxRkruM03Y1InF5u2pA4LQAAIA/AACAP/Pojb0UtIy6PkaDO0l/D7W9cqa6W1oRtAAAgD8AAIA/TXyNvVIg87nwGoO5BBK+M5oHnrqnqpk4AACAPwAAgD8z6Ow8yjkNP2po7bwCXP2+jtmhPfhAtr0AAAAAAAAAAGZGd7xciyy6YMETPl6wLzUc0Ly6ZgYeNAAAgD8AAIA/ZgAyvI+GZbq++KW7HGgYNXgwmzkWTny0AACAPwAAgD9a94g9EPauP1ToNz99/KW+YNghvKKVpz0AAAAAAAAAAOb4NT1c91O6Hvl2O8fjKDg5cm67TlgeugAAgD8AAIA/ADNfvYOOO7xw5WI9NzFtPLJyoz3AI0W9AACAPwAAgD+zaCs9j1YRuuFlrjoiK2w1zwr5OXPCyLkAAIA/AACAP00mFj0UaJ+6KsOFuk3vdrVIj5C6aiyaOQAAgD8AAIA/zeJXPI+udrqaOIy55QqptP4s7DM8FKI4AACAPwAAgD8A1SS97EHhueeZjzswLkc4GuAUO+rrZrgAAIA/AACAP4BDIb0f5cO5+j0SOc3g8TPxZAa72iQruAAAgD8AAIA/M8aTvPa4ILqi/UW6b6iZthR21bsKAQs2AACAPwAAgD8zsZy89igIuvsi/DrRnF61wsT4OjSAELoAAIA/AACAP5oDATyFo9G5GJN4OaZzojQU+0g7ukaSuAAAgD8AAIA/ABrXvBRm2zn27ba8PNDFOyO4Pzr7uRU9AAAAAAAAAAAzx7a74QyWuirmorsZUIY2sJyeOrIW9bUAAIA/AACAPzPziDnSkJU/nvV1u9rMSr+e8HQ94EGKPQAAAAAAAAAAmpmRu1KA/LkWsqc7d18pOFMcZDsSi5C3AACAPwAAgD8A60e9j/JiuvBbMLt8kNU1zPIuO/JtHToAAIA/AACAP5quZb3JdgI9PHoNPpaUJL5xMwC9YIyLvAAAAAAAAAAAgI4BvcNxTrpOeZW7Zi8WtVE/dzpy4a46AACAPwAAgD9m5ie5KahTutSyobsHhrY2yau6OpbBI7YAAIA/AACAP81XaL0Js6I/u20mvsK5FL/yqES9OtGnvQAAAAAAAAAAgFlxvUjDorrnaEi4sVIjsxWFYrqze2Q3AACAPwAAgD+a4588XNNBuszZFDnVREI081c7OnpOKLgAAIA/AACAP5ryEr1cxym6uuUJubcQHTMku+m6EtogOAAAgD8AAIA/M81rvPYYUboBc5C56vOeuHtcJDstAbY4AACAPwAAgD/NpCg7w8FGupIDlbz1CWe89uHAuv2jhrwAAAAAAAAAAGatDL3D7Rq6JTRjOUTEnLLIdSW77/GDuAAAgD8AAIA/U/EePmw2Xj9njbQ8nL0Ev8xjdD5vo6m9AAAAAAAAAACau4m8Cgc6uV5dQzy9N5C8EmbQO56YAD0AAAAAAAAAAJosrb2T+Aw/179GvapnAb9j/sK9FP01vQAAAAAAAAAAZma7uY/2T7qY3Qy69uwiufYJKLlnUzc5AACAPwAAgD8A6Yu89jxOumdwMTnBp4g0UwOBOosmTLgAAIA/AACAP+YxLL0p8HG6oU+MO0RyGzVu01+71hGkugAAgD8AAIA/M7nUvJMTzj6RMz080Fj4vh6Vwzt065U9AAAAAAAAAADNsgy8UmCAuV0yuTvQNxs4fInUugZUnboAAIA/AACAPzOT7jofRZs49NEVvO25AT3xnSK7HauwuwAAgD8AAIA/ZrySvBRWn7pq7uK6RG9KtZvV8roBJwE6AACAPwAAgD9m9iQ74Ry2ugAbsj1kCx++lH6GOlOSSj8AAIA/AAAAAJpw8bzqW7E/htMSv9Lwgb4YLII8OwiYPAAAAAAAAAAAmt9UPHHdCLkylFq6BPmXtcpiALvnP4A5AACAPwAAgD+zLj69KVADuvHYq7p8i0u1Ws0Luqb8xTkAAIA/AACAPzMDPLsUYLm62xWJOtkbNbofwae61m51OQAAgD8AAIA/ZkKHvB/1zrn06yK7Int0OMi98LqcxKw5AACAPwAAgD8z/QU8KZxruq5OpLu+Xmo4o+D+OiKLQToAAIA/AACAPwBz2zwU8Im6FVZVu3QuQ7YElXy6zl2tNQAAgD8AAIA/ZgLxuwUB9Ls23uI9njABPQu3Vr2TNNQ9AACAPwAAgD9A/Z49+6cxP/oDML2wfA6/GmERPivu2rwAAAAAAAAAAM1dnrz2iHe6ujfauE9IobbqKuq6fSASNgAAgD8AAIA/M/FBvIXD3rnJ/jA7VZu4PI3gq7qiELo6AACAPwAAgD8zH8+8e/ScurmRr7c3OaOyuJoDOy9lyjYAAIA/AACAP9r2LT6CDGE/CLQiPQLEGr8f338+PYNJvgAAAAAAAAAAAAmXvMNhdro2eYa6TteyPNxgirqsBZo9AACAPwAAgD9mBu879lgyuo3l4TdpQJ0y1PknO69cA7cAAIA/AACAP4AoAL3DSUm6RqNBOuDRqTWMwUQ7mG9huQAAgD8AAIA/mpt1PPYIXTkBioE6Zx2BtffLcDtS85m5AACAPwAAgD9mTTW9XBd2ugzqtrpL0p+1vyB/uwYh1jkAAIA/AACAPwBSgLyuQaK62vs7vGW9WLt/eog7n0QQPAAAgD8AAIA/zVRkO64XhTmAvWS7woYvPQsTmzuJVIK7AACAPwAAgD/NqqW84VygurURWzvaJnU4BUWqunbKA7oAAIA/AACAP5rlYT3hsoc5ZBkBuTPGkDTsZ1g7CP8bOAAAgD8AAIA/s9ZQvY9+HLouoSK8tujFO0miEbkv+bA8AACAPwAAgD8zPRs9SPeGur2b0zpWm1q3lvRcO1jc87kAAIA/AACAP5rXTjxcrzK6g0N6O+VGcrhGLQi7AKlmtwAAgD8AAIA/mnjAvI8+JrrZYcQ7errotPON8jl1duCzAACAPwAAgD/NQMq8XIs4urs03TuLVaQ649GMuzO9jDsAAIA/AACAPwDoFrspcAq6oJDLusRUUbWcGo+56HDrOQAAgD8AAIA/mpExO0MBErydT+U5CuECPfOBhj3IJ9S9AACAPwAAgD9m5G+8XMsZuqEvILjJIQWzJEZAO0jlOTcAAIA/AACAP5r587ukID+5LNvCOm8erbQT8ZW7uxnouQAAgD8AAIA/zWNOPnHKAL1za4+6fjs3OVE6ab4sisk5AACAPwAAgD/NqgY8XCMBumeOSLyuJ/Y7Tn6nOpO24LsAAIA/AACAP83st7qPYnG6TT0qumtQHrW1ESi74IxHOQAAgD8AAIA/mvkyusOpH7rjQSo8B6ABNoNTq7rN3wQ1AACAPwAAgD/m6DI9e1TluDYrmrseisA2wFpsO841NbYAAIA/AACAP5pxzjv2vHm6nkG4O3n6GLka6Zu6VZ1bugAAgD8AAIA/M6iSvHvYjrpohc+5rqCTtsByGTuQae84AACAPwAAgD9zC4q9PVpduU5a3zo3dh81UImNO05IBLoAAIA/AACAP/MfzT3IUZ4/CjKOPuZsIL/ihUI+MiI9PgAAAAAAAAAAMwC1vApnbbnQmiO6IgzktdltZTnC3D85AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiTQACSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYk0AAoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGYmHWrfceuMAWyUTegDjAF0lEdAtohTaxoqTnV9lChoBkdAaWAQ6IWP92gHTegDaAhHQLaIjEmplz51fZQoaAZHQGGlrB9Cu2ZoB03oA2gIR0C2iK0yULUkdX2UKGgGR0BhqXv6TGHYaAdN6ANoCEdAtoi0WsRxtHV9lChoBkdAZbiWD6Fds2gHTegDaAhHQLaJO+NcW0t1fZQoaAZHQGVR+yRjjJdoB03oA2gIR0C2iZWUOd5IdX2UKGgGR0Bie7kZJkGzaAdN6ANoCEdAtonF1Oj7AXV9lChoBkdAZNuA4GUwBmgHTegDaAhHQLaJyUXHim51fZQoaAZHQGeuYbCJoCdoB03oA2gIR0C2iewbQ1JldX2UKGgGR0Bk31XJYDDCaAdN6ANoCEdAtood4t6HCXV9lChoBkdAZzesunMt9WgHTegDaAhHQLaKoGD+R5l1fZQoaAZHQGh3xfnfVI9oB03oA2gIR0C2ithNqQA/dX2UKGgGR0Bk2FzXBguzaAdN6ANoCEdAtosyZML4OHV9lChoBkdAZ4mF8ohIOGgHTegDaAhHQLaLidrO7g91fZQoaAZHQGbCOrQw9JVoB03oA2gIR0C2jBD/uLJkdX2UKGgGR0Bi8TRYzSCwaAdN6ANoCEdAtoxD003wTnV9lChoBkdAZIRtIClrM2gHTegDaAhHQLaMb/Yrauh1fZQoaAZHQGSOHFglWwNoB03oA2gIR0C2jMrQ5WBCdX2UKGgGR0BnPQ/LTx5LaAdN6ANoCEdAto0iMJhOQHV9lChoBkdAYmRHrhR64WgHTegDaAhHQLaNT7D2rXF1fZQoaAZHQGiGX7DVH4JoB03oA2gIR0C2jay9h7VsdX2UKGgGR0BhLH779AHFaAdN6ANoCEdAto3UhFEy+HV9lChoBkdAZDBJBgNPQGgHTegDaAhHQLaN/r9ETg51fZQoaAZHQGii/nnuAqdoB03oA2gIR0C2jgla0QbudX2UKGgGR0Bl0kwi7kGSaAdN6ANoCEdAto5gNx2jf3V9lChoBkdAYh1Egntv42gHTegDaAhHQLaOh/0ulGh1fZQoaAZHQGb04sEq2BtoB03oA2gIR0C2jopB1LamdX2UKGgGR0BgKnx2B8QaaAdN6ANoCEdAto61ZV4oqnV9lChoBkdAZhW45Lh73WgHTegDaAhHQLaPyXdCVr11fZQoaAZHQGgCFWOp84RoB03oA2gIR0C2kEwt8NQTdX2UKGgGR0BnReM+/xlQaAdN6ANoCEdAtpDQUFjd6HV9lChoBkdAZF3l7MPjGWgHTegDaAhHQLaRXvKlpGp1fZQoaAZHQGWav9DQZ4xoB03oA2gIR0C2kbm69TP0dX2UKGgGR0BjzHDtPYWdaAdN6ANoCEdAtpJnf8/D+HV9lChoBkdAaCzJo0ygw2gHTegDaAhHQLaSkqqOtGN1fZQoaAZHQGQFDiGWUr1oB03oA2gIR0C2kpLYK6WgdX2UKGgGR0BhLv531SOzaAdN6ANoCEdAtpKcOAiFCnV9lChoBkdAY994JNTLn2gHTegDaAhHQLaS91uR9w51fZQoaAZHQGgd+zlcQiBoB03oA2gIR0C2k3TUVi4KdX2UKGgGR0BpTKI55qubaAdN6ANoCEdAtpOpqYZ2p3V9lChoBkdAZaTAqNIbwWgHTegDaAhHQLaT1le4Tbp1fZQoaAZHQGcZxtHhCMRoB03oA2gIR0C2k9lNlAeJdX2UKGgGR0BoQju6VdHEaAdN6ANoCEdAtpQBfTkQw3V9lChoBkdAZALiNsFdLWgHTegDaAhHQLaUAearmyR1fZQoaAZHQGRXpkXk5p9oB03oA2gIR0C2lIhh+fAcdX2UKGgGR0BmVEpRXOnmaAdN6ANoCEdAtpUNT5wfhnV9lChoBkdAYq/CiRGMGWgHTegDaAhHQLaVZIUJv5x1fZQoaAZHQFyfuJUHY6JoB03oA2gIR0C2lWXpnpSrdX2UKGgGR0BkTiMR6F/QaAdN6ANoCEdAtpWX0Gu9vnV9lChoBkdAaBQkFfReC2gHTegDaAhHQLaVm/Z/Tb51fZQoaAZHQGUHGBe5WiloB03oA2gIR0C2lfPi1iOOdX2UKGgGR0BVCGh24d6taAdLgGgIR0C2liLehwl0dX2UKGgGR0BmlkRnOB1+aAdN6ANoCEdAtpZGp3os7XV9lChoBkdAY7CK4x1xKmgHTegDaAhHQLaWTqX4TK11fZQoaAZHQGOVpwS8J2NoB03oA2gIR0C2lnjAzpHJdX2UKGgGR0BhUlHtnf2saAdN6ANoCEdAtpZ+n0kGA3V9lChoBkdAXoX2FnIyTWgHTegDaAhHQLaWz3SKFZh1fZQoaAZHQGfzyncclw9oB03oA2gIR0C2ltapo9LYdX2UKGgGR0BkXQWnCO3laAdN6ANoCEdAtpbYVYZEUnV9lChoBkdAaCtBHCoCMmgHTegDaAhHQLaW//zasZJ1fZQoaAZHQGG6Ov2Xb/RoB03oA2gIR0C2l1zZL7GedX2UKGgGR0BlMSg7HQyAaAdN6ANoCEdAtpflA8jiXXV9lChoBkdAZWKCnxaxHGgHTegDaAhHQLaYPHAymAN1fZQoaAZHQGjpLP2PDHhoB03oA2gIR0C2mI+uRs/IdX2UKGgGR0BnkkFhXr+paAdN6ANoCEdAtpk9uivgWXV9lChoBkdAYvOtdzGPxWgHTegDaAhHQLaZchH9WIZ1fZQoaAZHQGaSR5TqB3BoB03oA2gIR0C2mcU0iyIIdX2UKGgGR0BnanLFGXolaAdN6ANoCEdAtpnLybx3FHV9lChoBkdAaH1icXm/32gHTegDaAhHQLaZ86XBxgl1fZQoaAZHQGYokmhM8HRoB03oA2gIR0C2mh5kkKNRdX2UKGgGR0Bg7vmFJxvOaAdN6ANoCEdAtpokFkhA4XV9lChoBkdAZq5oRqXWv2gHTegDaAhHQLaa+4Z/CqJ1fZQoaAZHQGTqbkGRmshoB03oA2gIR0C2mybIo3JgdX2UKGgGR0Blbrt7a7EpaAdN6ANoCEdAtpsq1eBxxXV9lChoBkdAaTnxI8QqZ2gHTegDaAhHQLabV14Pf9B1fZQoaAZHQGb1ZUcXFcZoB03oA2gIR0C2m9mHHmzTdX2UKGgGR0BnWoIY3vQXaAdN6ANoCEdAtpy14iX6ZnV9lChoBkdAYHr1HOKO1mgHTegDaAhHQLac47b+Lm91fZQoaAZHQGFWMKCxu89oB03oA2gIR0C2nUZCSidrdX2UKGgGR0BPKQswtapxaAdLnWgIR0C2nUgRoRI0dX2UKGgGR0BpJ8KiO/+LaAdN6ANoCEdAtp1wr7O3UnV9lChoBkdAZKbPTodMkGgHTegDaAhHQLaeG8WKuSx1fZQoaAZHQGF/ll9Sde9oB03oA2gIR0C2niQnlXA/dX2UKGgGR0BoQvb7CSA6aAdN6ANoCEdAtp6kaZQYUHV9lChoBkdAcEGunuRcNmgHTVUDaAhHQLafLFNL1291fZQoaAZHQGVluqNp/PRoB03oA2gIR0C2ny1BppN9dX2UKGgGR0BlLW/WUbDNaAdN6ANoCEdAtp9VUxVQynV9lChoBkdAZbyXRgJC0GgHTegDaAhHQLafXoegctJ1fZQoaAZHQGVP8wHqu8toB03oA2gIR0C2n68O09hadX2UKGgGR0BkfzENvwVkaAdN6ANoCEdAtp+4hdMTOHV9lChoBkdAaJqGgSOBD2gHTegDaAhHQLaf4EroW591fZQoaAZHQGd3tmlImPZoB03oA2gIR0C2oDyG34KydX2UKGgGR0BnjpmPHT7VaAdN6ANoCEdAtqCUYTCcgHV9lChoBkdAaVAoLG7z1GgHTegDaAhHQLag6RHf/FR1fZQoaAZHQG8QX36AOKBoB03FA2gIR0C2oRUSM98rdX2UKGgGR0BoM6QDFId3aAdN6ANoCEdAtqFHq9oN/nV9lChoBkdAZjCEi+tbLWgHTegDaAhHQLahSBuXNTt1fZQoaAZHQGLyLvLHMlloB03oA2gIR0C2oZdedCmedX2UKGgGR0Bh4Uqaw2VFaAdN6ANoCEdAtqHEAvL5h3V9lChoBkdAZKrnxri2lWgHTegDaAhHQLah+cPvrnl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 512, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.249-x86_64-with-glibc2.35 # 1 SMP Sun Jul 16 16:29:19 CEST 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5ea65e43cfd505bb54e492ea6caa6b9b88080e4f4bb688d63f6d8b5e6ea13d9
|
3 |
+
size 169958
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,57 +4,57 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbQBL0tq2Y/qWHLvOvi0L6digy+XmwSvQAAAAAAAAAA5l4fvQp1rD9TERq+ohLZvgtg2L3KNO29AAAAAAAAAAAAnxk97DyMu2dgMrxBPZY8+kzFvBsHgD0AAIA/AACAP2rhhz5Eys4+qFatvCb7qb7zzyM+aIHFvQAAAAAAAAAAM3TbvR4U7D7SR74+pk0Lv+tMKz6jlVQ9AAAAAAAAAADaz6w9FJCGuj+8oree6Jyy+3FlOuSjuTYAAIA/AAAAALMqf73hQI+6PRYgM0rX8q7Yzpe58rXOswAAgD8AAIA/gLHDPV1fQz9y+Ck+Iy7xvs5q0D36ESk9AAAAAAAAAADNxHo7yXcBPVbq372PwES+e4zSvK3K1TwAAAAAAAAAAGbMQb09/iu7udBLO7QekDzmJJo8rqN3vQAAgD8AAIA/ZqTovXyliT//PZy+Ju3BvnmHY74tyWu+AAAAAAAAAACmu4u9S/+aP5fNnr7TPvy+mzn0vXj5g74AAAAAAAAAAOYafj0k5y08pt2UPT3eHr7Fzcg9YR+GvwAAAAAAAIA/TS3bvSlQfrpDL1a6rZ9mtjJXzrqwsXo5AACAPwAAgD/zbgm+UipqP16kmz0mUdC+QvqQvuVT7j0AAAAAAAAAADMwJD2um5C6A8iSt1yfj7Kg2AA7DmyqNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,14 +69,14 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
@@ -87,13 +87,13 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f82d03adfc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82d03ae050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82d03ae0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82d03ae170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f82d03ae200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f82d03ae290>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82d03ae320>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82d03ae3b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f82d03ae440>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82d03ae4d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82d03ae560>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82d03ae5f0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f82d054ea00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 10485760,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1716397405644484232,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdkAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAQAAAAAAAADM5IjwUrtq4Ms9aOj6hnzZtYpk7kG2DuQAAgD8AAIA/AEuWvOyZ8rmsvac67xCxNVq5l7v+s8G5AACAPwAAgD8zq167Cr0su7fzi7xwIYQ79CcqvGK7hjwAAIA/AACAP82gzLv2cCm6U6ncusTcGTXb1Qy7WRwAOgAAgD8AAIA/+sZJvp4YFD/vSS8+jdQHv6ItoL7a6I69AAAAAAAAAADNV5G89uQwumL7hLq7+5A3Di1aO8YKBbcAAIA/AACAP83QmLz2vHC6mT6gOgk4mrT0xbW5R/u3uQAAgD8AAIA/E2wiPiZzpj5aScG+D1vjvty/kLyM5BC+AAAAAAAAAADNc0q9bMTAuyS4rzwEuKE8lRMMvek5iD0AAIA/AACAP7O0d709eg25XU+pPJ+2ED3GJ1G5IlWAPAAAgD8AAIA/M/uFvClwc7ozy868MlqeOwAVDjwG/Yo8AACAPwAAgD/NQMs7KQg2uhodHzo1bx012/DHuTVDOLkAAIA/AACAPwD8szwDrGG8Fu1zuxcWKz08X90934AGvgAAgD8AAIA/Zj42vW2aLj4r9vo8c7HYvjXKh716jW29AAAAAAAAAAAzm0E7XMttup0+mrYi/XCxvfp8ujvRsjUAAIA/AACAPzMrfzx7cI26KXZCO2RDh7V3Hn+7InaAtAAAgD8AAIA/pqyMPRvG9j449du9pjofvy6Snj1KSSy+AAAAAAAAAAAzB487j850uvqUCToLYL20pwpNO0jHHLkAAIA/AACAP5qnATwpKHC6ahyVOf1/ULYKXgU66gqtuAAAgD8AAIA/MwVBvI8eK7osARg8H9ygtpUvhjpHIZq1AACAPwAAgD8zwCs9SJudupW8PrvWvZ437WjKutchDToAAIA/AACAP2YmBDpxvXa55gyVO+aNJDY7Ndi7MMWuugAAgD8AAIA/ZiAkPTtq/j3+QCa+X82OvqY1mL0K9h+9AAAAAAAAAAAArmg8ru+Nuisxizv17F224VgYu+77nboAAIA/AACAPzMk5LzhlLa6qMRfune3grb0Yxu6c8R/OQAAgD8AAIA/ZuonvXtihrqeF1E7ZmpeNaHtPLsIAXS6AACAPwAAgD/NMfy8UqDBuTopxLvvsBI4FkBSu1KXMrcAAIA/AACAPwDdqbxS4MO5mvGuORoFRLQLUoO6aFDOuAAAgD8AAIA/zZiyPPY4PbpL+m46ml9dtPEUgLuu1Iq5AACAPwAAgD8An5U8FPCGumRIOLsZ+cq4fgoDumUZUzoAAIA/AACAP800AL2P5hG6Wk2DuStAmbM3glo6KDeXOAAAgD8AAIA/mj3uPA9AbT0esEi+Jpl4vn5EJr4mRDG9AAAAAAAAAAAzWKw8KTReuiGaObp3FJy1/Ls1OyYKVDkAAIA/AACAP2bWBTz2hEu6Gghauvf3CzbxkrK6UmWAOQAAgD8AAIA/M2EYvPacIbq4s3Y4vH8gsdmpw7njT5C3AACAPwAAgD+zpxA94YaCum6R1bef+YSzrHclO2678jYAAIA/AACAPzM3UjxcSzy6TkaFO8M9jjh0Ksu6MEhquQAAgD8AAIA/s9YQPUghkLgeuSA8H7LxPK7hGLtvDBM8AACAPwAAgD+AtlS9e8GNP/ZxEr4BgDa/XfF1vXwapLwAAAAAAAAAAAY5Dr5nNJM/DjzjvjL76r7403C+XeJSvgAAAAAAAAAAmu3uu8OFJDnbPN+5G2HDuKLzTbvWLg85AACAPwAAgD+avbC7FKyLurdgjrep3t6yNQKjOtzroDYAAIA/AACAPwDLhTwpGGu6LHYONjlAmTGVMkg6JLQntQAAgD8AAIA/s3URPTOKrz8Gnvc+Dxapvsngh7xlIWw9AAAAAAAAAABaUcw9eAG/P+HrAz/J0dq845fKPSLfeD4AAAAAAAAAAM0oT7z2dHC6TjqIOZ7miTNUDPq5x7mbuAAAgD8AAIA/AJ0cvUhrmrpPJ5I7mm28NPfNtLrBG6m6AACAPwAAgD8AfL879pAYurYXpTsiSDg10a1ouzH8sroAAIA/AACAPzODljzeU78/eYSpPa9pib0j/ew8S4tyPQAAAAAAAAAAZsp8PFxTfLo+23Q6k80MtXn1yLkcy4u5AACAPwAAgD8a3KS9XOsEO3NUYD56AWu+K3iBO46ESz0AAAAAAAAAAACzBr1ccy+63GMqOVsNh7Y4FMU5cu9AuAAAgD8AAIA/GsxYPSlANLquDOS8n0CnNRIdOru6MhG1AACAPwAAgD+aWME8XGs3uuhZeDk8WVI0K1ZPusH9jLgAAIA/AACAP7N9Ub2Pnhe6qpcCO+KoPbbkbtm3CpM2tQAAgD8AAIA/M6XmPGGnyz6IkEU9Lgzgvr7HRj1olZA9AAAAAAAAAAAA5Qm9Kag7uvYal7rhvYW2OFK4OdKrrjkAAIA/AACAP5oWVz3DyQK6T+aYulUCMDRyc6a65KOzOQAAgD8AAIA/0x0SvnfWGz+XKhy8trf4vgMp8r04cbs8AAAAAAAAAAAtUSE+pjSyPwdmyT5pE7y+eoGGPuYEbz4AAAAAAAAAAHOSMT4KJo8/VKCKPtDs077d2aM+2tXuPQAAAAAAAAAAzSKdPFyDQ7pjWjQ1LLIPMKnZWThznVa0AACAPwAAgD8aaAs9e3SGukr7SjoLbEw2DRAWuwLSbLkAAIA/AACAPwBH6Lzsmfu5JnqFO6RaZTgRhj87/O0nuQAAgD8AAIA/ZkZDvHumrrrC/Le7C/iePCJhrDvymYy9AACAPwAAgD9AyJs9FhTuPo4dc70H++i+t4bpPTs/BL4AAAAAAAAAADMT67t7FJi6XZiQuhE2fDRGMQe7I0KkOQAAgD8AAIA/M/dsPV/dyDzfJhi+w4UmvtQbhb4KJT4/AACAPwAAAACgODO+h1BNPhkKlT6gwra+TwqOPAEvIj4AAAAAAAAAALPJC72PFlG6cifDuvSTZLZe85g6Q0ngOQAAgD8AAIA/APheO64BrLrwg+w65SkHvahoOLrVnQI7AAAAAAAAAACaybS8w/Ukumoug7p2PGO3xxIqO+aonTkAAIA/AACAPwCgnrzh9oS6vMMBOxwCMDhTphs792CTuQAAgD8AAIA/MxlFPCm0HboVDTW4S2N3s4O5pTs2bFY3AACAPwAAgD8zazS7j0ZRurIw1zpEeIS0eJhgu4in+rkAAIA/AACAP+YsOz24Dqe5D2Q6OjOcorPKpzO7/tdduQAAgD8AAIA/owZnvulJlT9a0tW+FUfzvtz1r76h4z6+AAAAAAAAAAAznpI8UuCiuQbSkrkLWkG0+aFVu0xwqTgAAIA/AACAP82s67t7/vi6+NUUuipWXDuOK0Y7fjodPQAAgD8AAIA/gK0BvfawSbqR85m3VAons2tWpTsx9rE2AACAPwAAgD+WyZ2+RwkaPz2jMb7JoDu/ZDbuvgiTYz0AAAAAAAAAAEChLz7sdC0/U5CPvqeACr+/O+c8ppXsvQAAAAAAAAAA5m9vvY/WSLr5vi44htJINs1M4LoS81O3AACAPwAAgD9mSdE8KQQHunITk7x6XDW50XEbu4J2pjgAAIA/AACAPwCAjbmuDYW69uBsuACUALP6Tww6YrSHNwAAgD8AAIA/mqWDvMMhXLqeTSQ4ZnDAMrqfkLpMnjm3AACAPwAAgD8zKzW9Ueu3P1LaN78xQAA+xRrcPFNrsbsAAAAAAAAAADONKrzXIwe5Ii4cuqTPNLUwyp870aE/OQAAgD8AAIA/M38gvFxPL7rhXrI7/IUitlXvnLuyMc+6AACAPwAAgD8a01K9XGsZukgJHLrcSgy1YAOrOiBEMjkAAIA/AACAP82E9jygy7M/av/7PTXpor5VElU9Fi4yPQAAAAAAAAAAZqBKPIXLmrmVrJq8UOLStH7QDDujDkc0AACAPwAAgD9mV/a8KTBHuuvbzjoJi4C1q1aLu8XK7rkAAIA/AACAP5qLX73DaTi6dlnhOEsYyzPlnYo6ok0DuAAAgD8AAIA/zciWvI9WcbqcsL+7B4L8N73aPjtwBDC3AACAPwAAgD8AwKk5uBa9uS0i2Drv6wK0+ZXOuysd/7kAAIA/AACAPwvrjr4iAYY/lbbbvkyGBb8QR+C+QRaSvQAAAAAAAAAAzUoNvKRAeblnRxw718e/u7KVWzs2uJc7AAAAAAAAAADAJoA9j7Z3ujptkLsKkea29rhQO3sfpToAAIA/AACAPzP0jL3DtX+4etgiuXCJkrUre5G7uBVBOAAAgD8AAIA/BauwvqqPGD9KaoI9MBjsvlofqb4ANtQ9AAAAAAAAAADNYI+89ihiuqPSUDrA0wg2IC7quv1QbLkAAIA/AACAPzOz2Dr25DO6Spant7esILKlsii6RdS/NgAAgD8AAIA/zQx7PewOOT9nyQ89SZ0RvwW0vz2GReY8AAAAAAAAAADNIjw84ZSMumCl4zqrI/U0WU/humRuAboAAIA/AACAPwDpgLz20HS6rpGku95Fi7UGqRG7vay9OgAAgD8AAIA/zWYAPD0adrmLndQ5cOcMNe0kSTu1U/i4AACAPwAAgD9mfpO84cSGuipfLLpzfWi21oR2uCWPRjkAAIA/AACAPwCgJroUSre6/R6BPAIdFb3ZLai75hcCvgAAAAAAAIA/E6vAvll9Yj+2Yzu+kaQbv0ELvb61v/28AAAAAAAAAACaRcc8FC7QuBuqxDvl8TA7mz9oO534GDwAAIA/AACAPzO3hTwp3AS6FSpOu4PFUzh8fTY74s7jOQAAgD8AAIA/M4tsu8PZf7p7cX86AGWNM+OkgjrZwpK5AACAPwAAgD9NkFS9KbQQPeLv0j3WbX++UFexvAjpYj0AAAAAAAAAAJrxbrv2DBK6s2djO12TCzgjajG6MgEWugAAgD8AAIA/AFiFu8PlCrrG59u6yeXbtdKA9ToKtv85AACAPwAAgD9NERk9wx0wuojAmLsermA49mIDO2DZkzgAAIA/AACAP3Obi71cu0q6nqOfO9QGjziTBbm6Mq7iuAAAgD8AAIA/s3JVPcN5drrVoJk7iRZ7tf9yADqkBq+6AACAPwAAgD8NUoK9SLuPumpp8TkctLo0NKKguWIYCbkAAIA/AACAP2Z/Cr24Dp86UakavF4LhryThYG8RY2OvQAAAAAAAAAA5hUHvaScczrQYey8a914PPNuzjq1lVS8AAAAAAAAAACaLt28j4ZiuoDGNbspXVK2U6s6uz3wUDoAAIA/AACAPwByAD32qAy6iNW7O+75TDhVjug63n8yuAAAgD8AAIA/QCfRPfYUcLpLy2g7MJ1MOJOan7qYygm5AACAPwAAgD+aBz4+YUOQP2dqKz5NhA+/VILEPrBpzL0AAAAAAAAAAJoJ5LvDeTq6yxjcNiIaKzI1MZs6+rf7tQAAgD8AAIA/mnmEvCkAWbo47885jvx7NmQOv7pWFPC4AACAPwAAgD9m/Am99qw+un23HzvPkSK5HSBguPpvNroAAIA/AACAPzOtsDyPPhe6epm6O8fZFDk20qc6gCFlugAAgD8AAIA/ZnDxPCmIebpKA206mhRQNeQKsbqLloq5AACAPwAAgD+zdVa99gxLukqOSbo2HMu1gP6CuoINajkAAIA/AACAP2YuAr2PGlC6bks1OLMzubI9ceu6gIVQtwAAgD8AAIA/M41mPPYoHbrt3p+6MRRDtj9KNDskwbk5AACAPwAAgD/NKgW8XKMXutUi27oexz21jX2ZOrYkAToAAIA/AACAP5odD7z2OHy6UOpjOJpb1DFdehS7kz+DtwAAgD8AAIA/mqFfvOFUjbq94tE4fxkHNGfaTzq1f+23AACAPwAAgD8AjO+8Kfw+us0V/LjuNnc0AfAAu75LETgAAIA/AACAP+ZDUD0PSTu8Kjp3vSxXwTyNfqk9u8ucvQAAgD8AAIA/zdRUu/YEMrpvBpKzr/pdrAPqh7rTVsAzAACAPwAAgD8zhQu8j2YZuuDhq7uBAD04ZfCoum1vILYAAIA/AACAP/PSGT6pFaw+AnubvlZb2r42egu9eoTVvQAAAAAAAAAAAGwTPPbEHbqWP4U66zAFNcVqfjoLVZi5AACAPwAAgD8Ak4+89nxHutoTjTlNPWgzY6K+uMZXorgAAIA/AACAP2b4Ej1Iede6DtgnvEEBT7y5xnG7jRw1vQAAgD8AAIA/M6ADvSmQFLpQDKQ6HO6/tfWlabpCasi0AACAPwAAgD8AANc6w0lDugz8sjfkgSozMVCpOU06zbYAAIA/AACAPwCf9r2NKzI+D4/IPtGdmr7YY549XFM6PgAAAAAAAAAAmjU5vI++WrqetNG6Zj+JtvY5ILrjiPs1AACAPwAAgD8AVNq8XAMwuq52EreVJMGx6ETnOVlZJzYAAIA/AACAPzOkpzwKBzG5taqmukTw3bXQazy7v5nDOQAAgD8AAIA/zXDPvLgW9rlGfrC787RPOFc0oblmhpw4AACAPwAAgD9mLr07j0p9uva2prrE8CG1NF8Du1ppwjkAAIA/AACAP83nTb12JTG8xa4mvbSh4L0G5S09ssM7PwAAgD8AAIA/ACCnvHueibpNHY65y7yqtCxtsTpgEKI4AACAPwAAgD8Ayi09RbO8P8HSyT7QnSU+H69/PGYYFT4AAAAAAAAAADMDjLpS0Pq5zXVtuYDWP7S7ltm6miCIOAAAgD8AAIA/AHGcPI/eZ7rvcUu683KYtYYMuzqifGY5AACAPwAAgD8AM6C8rq+RumfoBjnBOZE081cvO2sOGbgAAIA/AACAP5pPNzzsQee5CkZeubMNZ7M2OaG74fiEOAAAgD8AAIA/5l1CPcNderoYZ4654lgWtdvOLzv03aI4AACAPwAAgD9zi7a9bYw/P4Je1L3vuTm/Y7gbvn1PZzsAAAAAAAAAAAAbkTzhqJC6E7gVOAmAeDM3Jtc5tsErtwAAgD8AAIA/zSCkO66FlLruHbw6NhkANriiwzmSu9e5AACAPwAAgD+a/aQ7CncSuRuoKbmepom06x6eO8x5RzgAAIA/AACAP82YJT1ScIi5GfIwub7vBrQgXlO7c95NOAAAgD8AAIA/RioKvuBbAj+r4fM8q53/vsgLJL4JMok9AAAAAAAAAAAADJi87CmuuS7cR7wgI5E8rLCvOls7M7wAAIA/AACAPzPwHr32BFy6lRuTuPo7D7SDTt04BjqpNwAAgD8AAIA/Zub/uq6BpLpuOYU4675TuNtr4LnwO1e3AACAPwAAgD/Nr648j7JWOZaF/LvlVyI9ms3RuiCj07sAAIA/AACAPwC1sjykPCg8fVBcPARMX756m/K8q0rvPQAAAAAAAAAA5umHPfaMZLoEZg67eXMEtoMxyLkSpiY6AACAPwAAgD+av089UnD6uYUVnrZzI2Cxo7RTu6v9tzUAAIA/AACAP5ofTzy4roK545mruhETMbWTOpu7z7HHOQAAgD8AAIA/ZsIVvfa8Z7q2uCo5CRxjNJa1qDqqNke4AACAPwAAgD8z40y79uATugWIFbvulxK3vj/5unAmLDoAAIA/AACAPwBwibpIK6S6JbBYO8qH5DZGQrY6M792ugAAgD8AAIA/msH6vHtKibqFdjy5qz5kNjHlRrsDC1Y4AACAPwAAgD9aBZK9eYuBPmWnRj2D39u+omMgvqQoCj0AAAAAAAAAAJqIOL32dAq6WBJdPAMJwjguC5e7GXnDNwAAgD8AAIA/c90Vvq8Ziz6ldQQ+4QbzvtZY0r3bXRw+AAAAAAAAAAAdGXu+XFd3P8jbTb5GFAK/ZB+rvrr/pLwAAAAAAAAAAIADdj3mqLE/+hYDP2b4Z76C/uk8opk1PgAAAAAAAAAAANw8PIUr17kCpLc7u/6iNYxGpTtNX5w0AACAPwAAgD9td66+1z51P+BB2r330Au/CibIvlDerT0AAAAAAAAAAGa0XLx7trO6fuKpuu/KjbUmkbw4UibCOQAAgD8AAIA/MxmLvT3qVLmCjBa7ElmYtu+ENDtU1A82AACAPwAAgD8zE5k86cUDvEqUPr4Ls+O8UKJaPTZqvz0AAIA/AACAP5pLDLzhXJq6Dh/BuZ4EMTXDR/Y5JqbcOAAAgD8AAIA/AIy2vEixlrq9E4Y6JNB2NTV1Hrv2Hpu5AACAPwAAgD8zmts8j1Y1uqAgpLoA2hs0m+eMu5ttvzkAAIA/AACAP5qbcDxc00S6e2YpvEO8lDUKLBu6ilQFtQAAgD8AAIA/s0FlPVy7YroGcq26i6faNUHRxDoI5MY5AACAPwAAgD+zx1y9hRuTudITgjuLxG+2Hr6Cu7W6abUAAIA/AACAP9qnmT2pbno+diH7vVa2sL7Lo8k8k/B9vQAAAAAAAAAAZgKRu6Q4JLu65ry7xd4NvCDlXby7+fW8AACAPwAAgD9mhrg67KHDuSojhrvzTcm1wicaO4MXnjoAAIA/AACAPwC8xrxIJZK6MArtOdoOrrX6U6Y7upEHuQAAgD8AAIA/mtmCOsNBbLo3/4a7IvxtuKI/F7zb1jo6AACAPwAAgD8AnLs732SJP7s1bDy52mC/YKcbPYPH3jsAAAAAAAAAADN/4TwpoBm6GgCRuftclbQPbcU5bgqnOAAAgD8AAIA/ZtZNPcPhC7oeQEO7/EoMNsygfro4T0s6AACAPwAAgD/NTRu99oRgupYf+Tubqmm3O65lO52sprYAAIA/AACAP5onHjwUaLe63c3Rujfs9rUtjJc5kH7vOQAAgD8AAIA/mkLnvBR+krpa3f06B/KhNa2vLTsvcpA0AACAPwAAgD/mvlq9E+WMP0orxL2jHTa/N75TvVZ2zL0AAAAAAAAAABozBr50tcs9IPhnPjaJsb6fJp49aIelPAAAAAAAAAAAmjqSvPZkF7rZsS24MO2ls8f/c7qkp0g3AACAPwAAgD+aoog9XJscum6fRjpdFWG2k8eBOqYcYbUAAIA/AACAPzOrM71SIJC5y+RxOjPjzjRplok7EGiOuQAAgD8AAIA/M1NNO+Em3LrK+sY8TFBRvRVhabtpNze+AAAAAAAAgD9m/7+89qKSP5LA6b2RVly/LLsdOX0tnbwAAAAAAAAAAJpBnTw9Gk+5IoPbuoRB/rVff8K5xEwBOgAAgD8AAIA/mqW2u3EMIrudzIU861eKPE5obTzGiW69AACAPwAAgD9ziJq9KdgUugf9m7utb7e297DlOCFxszoAAIA/AACAPzP3vzvD+Re6X9VEN7PSXzVXt2S6Y1pqtgAAgD8AAIA/4BUFPmHJp7xWHga+e7ROvQ94/r1yK0O+AACAPwAAgD8zL4S7j3IuugVBZTynvBK3ZKKdOxRPDbYAAIA/AACAP83kPbw9+g65FgyHvL6AAjwgPwQ8PQx/vAAAgD8AAIA/zf44PFyDHLqki8o7R/cANtkRYDs98vg0AACAPwAAgD8zoT88tupbvEpSOL38Pt68xIRiPIDP8T0AAIA/AACAP81DpLz2nGa6atIyuO0YDrMeWz84FaZRNwAAgD8AAIA/zVTSu6QAF7n6mOM7k2U9vMDwxjqSIVo8AAAAAAAAAAAzU808XIM0uhSRqzrzN6s1s1GUue2Fw7kAAIA/AACAPwCw2rvXY1S5+gEqO+oAATxi8wy7dtr6ugAAAAAAAAAAZjsNvfZgD7rmy7W60XRVvG/Q5TqyCjs9AACAPwAAAAAAahm8KUx8uh8/wTea/kOyP9SAuzgv3LYAAIA/AACAP4BsGb3DRB68OoROPWL4JjxTBIa9NhkPPQAAgD8AAIA/AD8UPa4Rirpj3LW25VsWsvRscDqutdA1AACAPwAAgD9m4IA8hSvIufXoJrupEQU3q/9vO+kbAToAAIA/AACAP2Yilzx7NKi4KWW4O/XSOzYuW7E7UlA7NQAAgD8AAIA/Rt0Ivu8GHT/+/zU9eo/4vox1C77yhp49AAAAAAAAAADNwKs8FESWuvbTmzrKh2+206yyuKvltLkAAIA/AACAP3PWy724/KE6skFeNzVCCj0Pfkq8I2XPvQAAAAAAAAAAZtvqvFIwjLk6Zs85jBKYuNktjrpKkOK4AACAPwAAgD+ayOw89nxEumh8+zmSrPQ1i1i5uu5A5jQAAIA/AACAPzOJIDwfPca5elg8OGuwaDOC5a46dnVetwAAgD8AAIA/M9/ZvFwrfbrKkUO6lQ/RtYVDpDouiF45AACAPwAAgD/Njfi97u6vPyXiCb/p3aO+9r/5vXfvk74AAAAAAAAAAJqwuLy49uW5jWElPIAygLxSuKw5g/9SvQAAAAAAAAAAALBpPI++XbofKMS7liuvOBm2lbtye2A6AACAPwAAgD/NZMO81xMmufojojgzfJgyvjRnuyzqvbcAAIA/AACAPzMDZLtSuOu3vUuIOLyjADH7hAy8qdKitwAAgD8AAIA/zUC/u1zTOLrM8Dw7wswlN956jbrZnDG6AACAPwAAgD8APIc7wzVsuNDekDlEfASycBqROqQTr7gAAIA/AACAP5oF8jspNA26rqHZOsmzCrdguyg7iur7uQAAgD8AAIA/M/3qPIXbhLmStQs476aCM79JJbvwRCS3AACAPwAAgD+aScG6KcxbOUvegzos98o1KIIdOjF9nrkAAIA/AACAP3M+sr2yvRk+4xepPgwejb5ZKK09ehqoPQAAAAAAAAAAc5iLPZKgjjweVrK+TtCgvnFAUr5YRQW8AACAPwAAAAAzH5M7XEs2uuX/8boisGK2Z6vWurAtDDoAAIA/AACAP+aNOb3DeWq6wvovuTJBj7T9Xg06a+xOOAAAgD8AAIA/ms3svPaATLpQBJa59CYdtcZ1Jjsera04AACAPwAAgD8zXro8KQR2uhX03boKBeW8+l3+OsQnyD0AAIA/AAAAACaMoD2bd4S8DoB+vZwTOD1yqYU9NmlgvQAAgD8AAAAAM7NhPHvCibrIFve4ytk2tOZ8BriSTQ44AACAPwAAgD/NnDs8UlDGuXLq1TrVY7o1aYHSuRCf+LkAAIA/AACAP40Thz0pUA+62ufuujPEV7bihNG6gTYNOgAAgD8AAIA/Zv+WPPZMRLpSnpA7gYDgtEVW/rl9YuWzAACAPwAAgD+AkwG9XJsWuqIva7uMf1o4ZLRdOsz0AToAAIA/AACAPybclL3DgQ66kkGcuoJZsrVOEW+6ouuzOQAAgD8AAIA/zZvfPI8OWbo+hem6gn72te3JQTpOuwQ6AACAPwAAgD+aH7a8uL7NOGWnkjrgPrI1SzVTu7MRrrkAAIA/AACAP4CYNj0peDu6uQKZOh0xBDahu4w7ltmxuQAAgD8AAIA/GlJyvRRot7rOK1Q74tEBO27N5LnuCBY8AACAPwAAgD9AlZu9KXBAuhWPzLl+r3w1/oN/uutx5zgAAIA/AACAP+BfP755wPc+PhetPREP3L4wvia+l7oTPgAAAAAAAAAAM19LvFwvCrqQ7e46MSYYNmSBajvSWQm6AACAPwAAgD/Nm9K84ZiUujgelbr1fMQ1kTvPOmL2MLUAAIA/AACAP806Kj3sScS5rZpYt6ISmzENJsW7e/J9NgAAgD8AAIA/MwVEPgL5gD/2VPY9J0YLv1c8uz75tAu+AAAAAAAAAADNK/g89oBhumvBs7vkjjY4+rX5Op4kubYAAIA/AACAPwAh2Txcu3q68hjVumQZ7jOHS1g6Uui6swAAgD8AAIA/MzNzPFLwvLko7AM8PxgJtX1FxLkOLgK0AACAPwAAgD8acha9XJsiurJoOLzvmD+2Sl7RuQCcrjUAAIA/AACAPzMnujyFC844i7/wOlXRjjTuzF05nhYRugAAgD8AAIA/M3l7PLiGxblgKUA8ZGYWPP6EpbmhUyU8AACAPwAAgD8zFVO8jy4tujb/qbtTZEA4CH1WufNIwDcAAIA/AACAP5pH4zyce2W8sB/nvPf+2TzNtcm9cp2tPQAAgD8AAIA/TbYqvRQokbq2eVu7nkMkOAxLubq1zfw5AACAPwAAgD8AKrc8H43EuRgpejZswoUxfbyBOmZHl7UAAIA/AACAPzPNFL0fLaO58gWOOmrKlTXze0i6PUqluQAAgD8AAIA/urQ5Pv/P2D4+CcK+X8sUvx4tN7zTb+e9AAAAAAAAAABmtso8wz0uumIVWjxjjvm8gbR2u7562r0AAAAAAACAPwChvjzDQXK6CMLUOuaZCDXt6aO6kH/wuQAAgD8AAIA/AOTDPMO5MLoOrwA7SUpRtvawobph0RO6AACAPwAAgD+aHMA89rxDuhKGijirEHsyM+ujOVK+obcAAIA/AACAP2Yc5Dx5q2o+AwwLPSq/575OJis78LHaPAAAAAAAAAAA5p44PVyXerrjp006KWdANR3IBjvLgHC5AACAPwAAgD8z4ZK84Q6RumiA6DknshM1MOoeO6ETBrkAAIA/AACAP02sBz20ff891ujmvRLXkr6d2fK9RrhTvQAAAAAAAAAAABB3PMMJWboti/E40RSZtiv3aDohDQe4AACAPwAAgD9mNC68w5ETuv3ZMTxpqki2omyrOgkZQ7UAAIA/AACAP2b2nrq4Nty5GNK3tvdshLELMvq5EGzYNQAAgD8AAIA/mv0vPfY8ObqYoa05D2OZtgO7pbnICsa4AACAPwAAgD/N/ng89sRlui1zbboEz4y2HW+eOhgzhzkAAIA/AACAP5rt+bzD2WG6hLGlunpOp7VFLYc6Lo+9OQAAgD8AAIA/Zs5cO8NJZ7oITZi6vJiWNnHuTrtbZa45AACAPwAAgD+mO8s9uQ0cP8ub1L1S+ye/L4YlPggJXL4AAAAAAAAAAGZSEz0pqDK6njOAOg29e7ZI0Iy6t8CWuQAAgD8AAIA/AAKEvEhvgbr4Ub67GgQMOEnojDr4SH+3AACAPwAAgD/NtY88H32buXa8lDpTbr82FoFrOgWSrrkAAIA/AACAP4DFCb327Dq6FsoLOynpmblZeVc6MEMYugAAgD8AAIA/TXZGPVzvLrq9GBe6ESwQOZe1FTuyXx05AACAPwAAgD/NShe9rl2GunIaSTqcG6c1i/1kO5IOZ7kAAIA/AACAPwDIGrtIoaE5F7a5PFu6WzwZCjc7JBUOvQAAAAAAAAAATcabvR+FtThikVI8xddwPIp5/LrNSQE8AACAPwAAAABNxwy99hxEulZso7jVDQ22+WGHOvhwvDcAAIA/AACAP5pLRbxSSOC5ALmLuqCEKbY2ISU7ly+kOQAAgD8AAIA/AHTVuylgFLrgsI87TRPANZvTvbqOLKW6AACAPwAAgD8zlDK99uBtukrhgTsBYkQ4mvb+uqwagbgAAIA/AACAPwB4QztSGNG5NgJeOnclVDanMwc7NSSDuQAAgD8AAIA/M4WnvBTQo7qdaoYzXK8gMCYhuDp6c8SzAACAPwAAgD9m97U80urJu44VkzmZ9Ti7gg8iPbqr2DsAAIA/AACAP62MCr40aOM92wiGPguPyb5lPLs759ewPQAAAAAAAAAAZvJmPOyJzLmGF9U7R9zJPMXternJqa29AACAPwAAgD8a8jG9jwZJuqrdlTyWz8Q06p9TuwHmtDMAAIA/AACAP80VrrzhZoG6r2MQO/6cyrpdZsK7IoMyuwAAgD8AAIA/zYbxPMMVJrrDdym3WZiFsu8Xnju+aUk2AACAPwAAgD8AYsg9vtGOPwz6AD4W5iC/0b5IPpAKAjwAAAAAAAAAADNNOzwphCy6S/Uou7f4aLugQjC7WuE9vAAAgD8AAIA/zdo8PCk0VbpdTa47chcpOH1mE7vCicS2AACAPwAAgD+aAfi9fRn7PiQENj0TfAq/waw1vq57lr0AAAAAAAAAAM1Fpbxcj3I1K8iNOiOsyTX1b5W63mCnuQAAgD8AAIA/GkaevUMACT33zJQ+4BPLvppJFj7QIdg9AAAAAAAAAAAzSoO9exiLupkttDpligC16JweO7335rMAAIA/AACAP80spjqPNh+6diiKuzLIhzifNok7L1sCOgAAgD8AAIA/zczbOCnwEbpOR888/amrvMFXTzrpypW9AAAAAAAAgD9m+h29j+oKuh3Sa7xOAPg1VKR2u3NBYbUAAIA/AACAP01hRb1cezy68+/2N5xrITP+ulK6jhMOtwAAgD8AAIA/zc6pPOFwhrqtQG45i+U9NIBX0LrWD4m4AACAPwAAgD/6rAm+VDj8PiWUZD3G4hK/MOe0vebgFz0AAAAAAAAAAM0igjxSaKK591Yqu9586bX2dXG77ElHOgAAgD8AAIA/Zj6SvB9V9rnu6ZQ3b3TuMpDH7LrjxKu2AACAPwAAgD8zPRi9H733uSUAFTvZQwo2XgZdOjIMCjUAAIA/AACAPwAYiLspYBG6LsMwvCcEwDyEj7u5NgTpuwAAgD8AAIA/GpIhPSCpgj9mZcA8ZREkv4pUMT5STr89AAAAAAAAAACaEdS7CmcfuUCZMDrX/km1dKxZO1DaT7kAAIA/AACAP2a2cDwK9wG57Y+iuwUSzzjsvjM7E5dDuAAAgD8AAIA/AE98PbgOobnmSJ44TEM6NpQ3BLs7dbq3AACAPwAAAACacum8rj+iOQodXrx/GC48r8+MO4ADJD0AAAAAAAAAALPyKL32oDW6tU53O5UDTzgUISW7S1AZugAAgD8AAIA/ZjLNvFzHXLpr44a7jnEDNxvGe7t+SZw6AACAPwAAgD967RW+KVodvE5xPzvcqDs59Ul+PYKve7oAAIA/AACAP2ZvxDxIbYO6ivMXOgGhlDV7AJs7nJCXNAAAgD8AAIA/AB/iPIWL2zhINcg6yQnyN0otzboQAni5AACAPwAAgD+zfws9XANRugITkDnVnyQ1PSyMO/oLprgAAIA/AACAP2agjD325Ce6HDA7u1ktBjh4tOK6BifYOQAAgD8AAIA/5moePY+mDLpGV2S3VumpslHNMzrK6oQ2AACAPwAAgD8zHPM8jwZhul7WiLsOYhU4qGzBOKsvsTcAAIA/AACAP2bE4LwpUAC6/4KguiSFDbbwema7ovu8OQAAgD8AAIA/mlHcu4+efbqjPvA4lSn1M6x/bjpBgwi4AACAPwAAgD+aidS74cy0un96QDuJU+u1+jR8ujaGXLoAAIA/AACAP5oR47wfLce5jpdhud5rOrQfTUG7uT6BOAAAgD8AAIA/AHhtuzyRDz0Dzb09Ticpvtvhjj1FP8w9AAAAAAAAAAAzG228XEszuk9cQbpPJ8q1W4urOlpKXjkAAIA/AACAP+2fk74XQ14/g5sCPJ1kCr/Hlqi+5YYCPgAAAAAAAAAAZjuWvI96BbreJLa6QCfVtT81Mjvl5NM5AACAPwAAgD8AEGO8w1Eyuh5q9LsnIVw1epxQuiJixbQAAIA/AACAP5rb6TzswY650ucJPFE0eLOCNZw7GqiorwAAgD8AAIA/AFIkvfaUFLoHuL05VSBFs683lruwH9y4AACAPwAAgD+aa4o8j7YmuvU1ObnO0kI2MplIuvppUTgAAIA/AACAP0DXgL3PIkA9d64LPuXDgb4NL6A9ge6WPQAAAAAAAAAAZssnvcPpVLo2h0I6ngKANH9L2boTgFy5AACAPwAAgD8aBCI99gQIul0N9rrGo88313Rmu4HaojkAAIA/AACAP2ZHzzxcwxi6bjeQuVwYurQXnQ46QfunOAAAgD8AAIA/oMk9vtCdUD/ST0+897ACv4VgXL5d1q48AAAAAAAAAADNkP07wzl0uj+cOjpuGxO3gRTKutraVLkAAIA/AACAP3P0Ur5+h74+w7SAPu7Kwr5xljq9w93gPQAAAAAAAAAANqiOPsWwDz84v5w9rxIjv3Ri9T7m1Ga+AAAAAAAAAACA0gm9UtjqODt4Zjx+5jC6GemgOkNRJTwAAAAAAAAAAJrBG7vtqak/DeqgvMlP5763/+K68BZaOwAAAAAAAAAAmrjhvMNdWbpFFXy5Qr0ZtOEtH7sua5A4AACAPwAAgD+apOm8wykquvqBDDqRyoS3VBtrOne1IbkAAIA/AACAP4D2Ur0fMca7v2esPHeGCTx0Kl09ro70vAAAgD8AAIA/M5MXujHCLz78vjE9gdmUvkD8PL0Kh6O8AAAAAAAAAACa5Lm8z/CtPxrdwb0RiMi+UbdlOxFNEDsAAAAAAAAAAGZqsDuPNna6ZsOQNwAauzCUz2+6xwuntgAAgD8AAIA/mnzbPFxjHrrLQpE6Gy5HNo7qqjp8pKu5AACAPwAAgD+aZeC74VSHuuK0Xjv0wog4rBOFOkeIBLoAAIA/AACAPwBfl7x7EIG6YSHKOtkWbjVdPem6dllXNAAAgD8AAIA/Guw+vcNZIboIU+06wqk1OHEOVLs1Z4y5AACAPwAAgD+aWii90qvtu9Xx+rtxFsI8JYNnPVyNoL0AAIA/AACAP2ZmqrcUYuq6zkHuOsJ43rzfBKi7o0TCvQAAgD8AAIA/zZ5PvFzPNri2qD47cskYO6pcVjvKNQM7AAAAAAAAAAAAL5C8ro+TutulQLtikVm2gozyuqArXzoAAIA/AACAPwA0eDy4zqS5CZHKu7/HTTygNzU77butuwAAgD8AAIA/TThNPfaYK7oZJse6rMEKtnZdfzsGLes5AACAPwAAgD+aRaa8wxEGuuI567pERmW1kkrOuj7fBzoAAIA/AACAP+3uMr62S4k/+CZ2vneiD78i7FC+jdXuvQAAAAAAAAAAgL6vPfxHRD+53Dc8DNAbvxcyMz4zVna9AAAAAAAAAAAANGU9/DcUPvFeGb5HLJa+sH6MvWBgw7wAAAAAAAAAAM0ByzwpgEu6OuaoMxsyUq5wTkA65XO6swAAgD8AAIA/gCEDPVw3Ebp4fSS6iTzHtZi51jui8z85AACAPwAAgD8AQLS5SMHyuB4k4Tvc6Gq846H0uQv7ODwAAAAAAAAAAObPGz1cQwW6M2+uu1ChlrXmXLy6qJMJNQAAgD8AAIA/AFTyvKQQFrnSCFY4AHJUsvifg7v4en63AACAPwAAgD8As4+8PZoXuZ9+ybpQ4Jy4vaOBOnL68zkAAIA/AACAP5qVQrwpCAy6XtV5OfMS3TTwwJI7iReRuAAAgD8AAIA/4G42PmEgMD8GTmm+I3wCv3KiDT4wgja+AAAAAAAAAAAA7iW87MnpuatO1zr5tx02B0hYu5It/bkAAIA/AACAPzPrGLxcfwo5KpafOiSh0jWzekA7/4m/uQAAgD8AAIA/zZoIPYSEGD57XLu9PpuivhDxb7100Re9AAAAAAAAAADNxGY8KZB6ut5zjLlP7/C0hfmtOjNMnjgAAIA/AACAP+Y7Rb1Im526Ow94OUnHWbcc4sA6V30RuAAAgD8AAIA/M6fnvL3fqD/rHjO+9azmvozPazvgIUO9AAAAAAAAAAAAmq08hfO0uT4tiDrM/MU1XNw4O3cWoLkAAIA/AACAP5pdJTyFM425ejGdu0622Te4xVu7HtsstwAAgD8AAIA/M3kzvMNZdbqY0w+6+ykCtuOHqzrCayM5AACAPwAAgD+aP4C9KWB0uh0Mjjv0bt82fqdaOxY1pboAAIA/AACAPwAt+zzDaWW6clUzuQlirLMtUWm5jmpNOAAAgD8AAIA/rd5gPsVpDz9kJ5G+G8sKv5L4Lz62Hnm+AAAAAAAAAABm6Aa9SN2IuqT3ATzpawc8jh50uxKk6zwAAIA/AACAP2aiojvsae+5s0Tguh2WCrYNv1+6NbMAOgAAgD8AAIA/M4+/PCn4aboq+Cm7e+ETOGlPXjvBOMQ5AACAPwAAgD9mOcA8KaR1usGTiDlzG1y094cVO7K9m7gAAIA/AACAPzPj+rtVzLg/yT+ivbEJZj18Y8Y8uI2cPAAAAAAAAAAAmtnFO6RYYDqazO67/071u0S0c7xIONQ8AACAPwAAAACa2c27uLbsuRSpO7rbuZI10PUOOmZGDLUAAIA/AACAP80UUzuPjga6Wy6IO3dfzLVWXD240H6dugAAgD8AAIA/ZppOPAW4iLuEIZS8MJ6evE/mD73iUIe9AACAPwAAgD/mWka9KWhvupMWzDsyIuq2oJugOSWW3rUAAIA/AACAP5qhNTxcKzK6jviYOzP95jdvw9q6BCqFNgAAgD8AAIA/DQX9vdK6Oz6j3YU+QcPUvgWgxTyK8lI9AAAAAAAAAAAG0wU+tc28PxPGKT9+64m9xmOuPWkvpz4AAAAAAAAAAMAb+j3qLj0+guqBvuQ7rL4iPLu8iP6OvAAAAAAAAAAAAPfZPCkCS7wqtRm+AE7Tvcfxdj22tBU/AACAPwAAgD8AgNi7e3SSujxRkruM03Y1InF5u2pA4LQAAIA/AACAP/Pojb0UtIy6PkaDO0l/D7W9cqa6W1oRtAAAgD8AAIA/TXyNvVIg87nwGoO5BBK+M5oHnrqnqpk4AACAPwAAgD8z6Ow8yjkNP2po7bwCXP2+jtmhPfhAtr0AAAAAAAAAAGZGd7xciyy6YMETPl6wLzUc0Ly6ZgYeNAAAgD8AAIA/ZgAyvI+GZbq++KW7HGgYNXgwmzkWTny0AACAPwAAgD9a94g9EPauP1ToNz99/KW+YNghvKKVpz0AAAAAAAAAAOb4NT1c91O6Hvl2O8fjKDg5cm67TlgeugAAgD8AAIA/ADNfvYOOO7xw5WI9NzFtPLJyoz3AI0W9AACAPwAAgD+zaCs9j1YRuuFlrjoiK2w1zwr5OXPCyLkAAIA/AACAP00mFj0UaJ+6KsOFuk3vdrVIj5C6aiyaOQAAgD8AAIA/zeJXPI+udrqaOIy55QqptP4s7DM8FKI4AACAPwAAgD8A1SS97EHhueeZjzswLkc4GuAUO+rrZrgAAIA/AACAP4BDIb0f5cO5+j0SOc3g8TPxZAa72iQruAAAgD8AAIA/M8aTvPa4ILqi/UW6b6iZthR21bsKAQs2AACAPwAAgD8zsZy89igIuvsi/DrRnF61wsT4OjSAELoAAIA/AACAP5oDATyFo9G5GJN4OaZzojQU+0g7ukaSuAAAgD8AAIA/ABrXvBRm2zn27ba8PNDFOyO4Pzr7uRU9AAAAAAAAAAAzx7a74QyWuirmorsZUIY2sJyeOrIW9bUAAIA/AACAPzPziDnSkJU/nvV1u9rMSr+e8HQ94EGKPQAAAAAAAAAAmpmRu1KA/LkWsqc7d18pOFMcZDsSi5C3AACAPwAAgD8A60e9j/JiuvBbMLt8kNU1zPIuO/JtHToAAIA/AACAP5quZb3JdgI9PHoNPpaUJL5xMwC9YIyLvAAAAAAAAAAAgI4BvcNxTrpOeZW7Zi8WtVE/dzpy4a46AACAPwAAgD9m5ie5KahTutSyobsHhrY2yau6OpbBI7YAAIA/AACAP81XaL0Js6I/u20mvsK5FL/yqES9OtGnvQAAAAAAAAAAgFlxvUjDorrnaEi4sVIjsxWFYrqze2Q3AACAPwAAgD+a4588XNNBuszZFDnVREI081c7OnpOKLgAAIA/AACAP5ryEr1cxym6uuUJubcQHTMku+m6EtogOAAAgD8AAIA/M81rvPYYUboBc5C56vOeuHtcJDstAbY4AACAPwAAgD/NpCg7w8FGupIDlbz1CWe89uHAuv2jhrwAAAAAAAAAAGatDL3D7Rq6JTRjOUTEnLLIdSW77/GDuAAAgD8AAIA/U/EePmw2Xj9njbQ8nL0Ev8xjdD5vo6m9AAAAAAAAAACau4m8Cgc6uV5dQzy9N5C8EmbQO56YAD0AAAAAAAAAAJosrb2T+Aw/179GvapnAb9j/sK9FP01vQAAAAAAAAAAZma7uY/2T7qY3Qy69uwiufYJKLlnUzc5AACAPwAAgD8A6Yu89jxOumdwMTnBp4g0UwOBOosmTLgAAIA/AACAP+YxLL0p8HG6oU+MO0RyGzVu01+71hGkugAAgD8AAIA/M7nUvJMTzj6RMz080Fj4vh6Vwzt065U9AAAAAAAAAADNsgy8UmCAuV0yuTvQNxs4fInUugZUnboAAIA/AACAPzOT7jofRZs49NEVvO25AT3xnSK7HauwuwAAgD8AAIA/ZrySvBRWn7pq7uK6RG9KtZvV8roBJwE6AACAPwAAgD9m9iQ74Ry2ugAbsj1kCx++lH6GOlOSSj8AAIA/AAAAAJpw8bzqW7E/htMSv9Lwgb4YLII8OwiYPAAAAAAAAAAAmt9UPHHdCLkylFq6BPmXtcpiALvnP4A5AACAPwAAgD+zLj69KVADuvHYq7p8i0u1Ws0Luqb8xTkAAIA/AACAPzMDPLsUYLm62xWJOtkbNbofwae61m51OQAAgD8AAIA/ZkKHvB/1zrn06yK7Int0OMi98LqcxKw5AACAPwAAgD8z/QU8KZxruq5OpLu+Xmo4o+D+OiKLQToAAIA/AACAPwBz2zwU8Im6FVZVu3QuQ7YElXy6zl2tNQAAgD8AAIA/ZgLxuwUB9Ls23uI9njABPQu3Vr2TNNQ9AACAPwAAgD9A/Z49+6cxP/oDML2wfA6/GmERPivu2rwAAAAAAAAAAM1dnrz2iHe6ujfauE9IobbqKuq6fSASNgAAgD8AAIA/M/FBvIXD3rnJ/jA7VZu4PI3gq7qiELo6AACAPwAAgD8zH8+8e/ScurmRr7c3OaOyuJoDOy9lyjYAAIA/AACAP9r2LT6CDGE/CLQiPQLEGr8f338+PYNJvgAAAAAAAAAAAAmXvMNhdro2eYa6TteyPNxgirqsBZo9AACAPwAAgD9mBu879lgyuo3l4TdpQJ0y1PknO69cA7cAAIA/AACAP4AoAL3DSUm6RqNBOuDRqTWMwUQ7mG9huQAAgD8AAIA/mpt1PPYIXTkBioE6Zx2BtffLcDtS85m5AACAPwAAgD9mTTW9XBd2ugzqtrpL0p+1vyB/uwYh1jkAAIA/AACAPwBSgLyuQaK62vs7vGW9WLt/eog7n0QQPAAAgD8AAIA/zVRkO64XhTmAvWS7woYvPQsTmzuJVIK7AACAPwAAgD/NqqW84VygurURWzvaJnU4BUWqunbKA7oAAIA/AACAP5rlYT3hsoc5ZBkBuTPGkDTsZ1g7CP8bOAAAgD8AAIA/s9ZQvY9+HLouoSK8tujFO0miEbkv+bA8AACAPwAAgD8zPRs9SPeGur2b0zpWm1q3lvRcO1jc87kAAIA/AACAP5rXTjxcrzK6g0N6O+VGcrhGLQi7AKlmtwAAgD8AAIA/mnjAvI8+JrrZYcQ7errotPON8jl1duCzAACAPwAAgD/NQMq8XIs4urs03TuLVaQ649GMuzO9jDsAAIA/AACAPwDoFrspcAq6oJDLusRUUbWcGo+56HDrOQAAgD8AAIA/mpExO0MBErydT+U5CuECPfOBhj3IJ9S9AACAPwAAgD9m5G+8XMsZuqEvILjJIQWzJEZAO0jlOTcAAIA/AACAP5r587ukID+5LNvCOm8erbQT8ZW7uxnouQAAgD8AAIA/zWNOPnHKAL1za4+6fjs3OVE6ab4sisk5AACAPwAAgD/NqgY8XCMBumeOSLyuJ/Y7Tn6nOpO24LsAAIA/AACAP83st7qPYnG6TT0qumtQHrW1ESi74IxHOQAAgD8AAIA/mvkyusOpH7rjQSo8B6ABNoNTq7rN3wQ1AACAPwAAgD/m6DI9e1TluDYrmrseisA2wFpsO841NbYAAIA/AACAP5pxzjv2vHm6nkG4O3n6GLka6Zu6VZ1bugAAgD8AAIA/M6iSvHvYjrpohc+5rqCTtsByGTuQae84AACAPwAAgD9zC4q9PVpduU5a3zo3dh81UImNO05IBLoAAIA/AACAP/MfzT3IUZ4/CjKOPuZsIL/ihUI+MiI9PgAAAAAAAAAAMwC1vApnbbnQmiO6IgzktdltZTnC3D85AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiTQACSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYk0AAoWUjAFDlHSUUpQu"
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.04857599999999995,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGYmHWrfceuMAWyUTegDjAF0lEdAtohTaxoqTnV9lChoBkdAaWAQ6IWP92gHTegDaAhHQLaIjEmplz51fZQoaAZHQGGlrB9Cu2ZoB03oA2gIR0C2iK0yULUkdX2UKGgGR0BhqXv6TGHYaAdN6ANoCEdAtoi0WsRxtHV9lChoBkdAZbiWD6Fds2gHTegDaAhHQLaJO+NcW0t1fZQoaAZHQGVR+yRjjJdoB03oA2gIR0C2iZWUOd5IdX2UKGgGR0Bie7kZJkGzaAdN6ANoCEdAtonF1Oj7AXV9lChoBkdAZNuA4GUwBmgHTegDaAhHQLaJyUXHim51fZQoaAZHQGeuYbCJoCdoB03oA2gIR0C2iewbQ1JldX2UKGgGR0Bk31XJYDDCaAdN6ANoCEdAtood4t6HCXV9lChoBkdAZzesunMt9WgHTegDaAhHQLaKoGD+R5l1fZQoaAZHQGh3xfnfVI9oB03oA2gIR0C2ithNqQA/dX2UKGgGR0Bk2FzXBguzaAdN6ANoCEdAtosyZML4OHV9lChoBkdAZ4mF8ohIOGgHTegDaAhHQLaLidrO7g91fZQoaAZHQGbCOrQw9JVoB03oA2gIR0C2jBD/uLJkdX2UKGgGR0Bi8TRYzSCwaAdN6ANoCEdAtoxD003wTnV9lChoBkdAZIRtIClrM2gHTegDaAhHQLaMb/Yrauh1fZQoaAZHQGSOHFglWwNoB03oA2gIR0C2jMrQ5WBCdX2UKGgGR0BnPQ/LTx5LaAdN6ANoCEdAto0iMJhOQHV9lChoBkdAYmRHrhR64WgHTegDaAhHQLaNT7D2rXF1fZQoaAZHQGiGX7DVH4JoB03oA2gIR0C2jay9h7VsdX2UKGgGR0BhLH779AHFaAdN6ANoCEdAto3UhFEy+HV9lChoBkdAZDBJBgNPQGgHTegDaAhHQLaN/r9ETg51fZQoaAZHQGii/nnuAqdoB03oA2gIR0C2jgla0QbudX2UKGgGR0Bl0kwi7kGSaAdN6ANoCEdAto5gNx2jf3V9lChoBkdAYh1Egntv42gHTegDaAhHQLaOh/0ulGh1fZQoaAZHQGb04sEq2BtoB03oA2gIR0C2jopB1LamdX2UKGgGR0BgKnx2B8QaaAdN6ANoCEdAto61ZV4oqnV9lChoBkdAZhW45Lh73WgHTegDaAhHQLaPyXdCVr11fZQoaAZHQGgCFWOp84RoB03oA2gIR0C2kEwt8NQTdX2UKGgGR0BnReM+/xlQaAdN6ANoCEdAtpDQUFjd6HV9lChoBkdAZF3l7MPjGWgHTegDaAhHQLaRXvKlpGp1fZQoaAZHQGWav9DQZ4xoB03oA2gIR0C2kbm69TP0dX2UKGgGR0BjzHDtPYWdaAdN6ANoCEdAtpJnf8/D+HV9lChoBkdAaCzJo0ygw2gHTegDaAhHQLaSkqqOtGN1fZQoaAZHQGQFDiGWUr1oB03oA2gIR0C2kpLYK6WgdX2UKGgGR0BhLv531SOzaAdN6ANoCEdAtpKcOAiFCnV9lChoBkdAY994JNTLn2gHTegDaAhHQLaS91uR9w51fZQoaAZHQGgd+zlcQiBoB03oA2gIR0C2k3TUVi4KdX2UKGgGR0BpTKI55qubaAdN6ANoCEdAtpOpqYZ2p3V9lChoBkdAZaTAqNIbwWgHTegDaAhHQLaT1le4Tbp1fZQoaAZHQGcZxtHhCMRoB03oA2gIR0C2k9lNlAeJdX2UKGgGR0BoQju6VdHEaAdN6ANoCEdAtpQBfTkQw3V9lChoBkdAZALiNsFdLWgHTegDaAhHQLaUAearmyR1fZQoaAZHQGRXpkXk5p9oB03oA2gIR0C2lIhh+fAcdX2UKGgGR0BmVEpRXOnmaAdN6ANoCEdAtpUNT5wfhnV9lChoBkdAYq/CiRGMGWgHTegDaAhHQLaVZIUJv5x1fZQoaAZHQFyfuJUHY6JoB03oA2gIR0C2lWXpnpSrdX2UKGgGR0BkTiMR6F/QaAdN6ANoCEdAtpWX0Gu9vnV9lChoBkdAaBQkFfReC2gHTegDaAhHQLaVm/Z/Tb51fZQoaAZHQGUHGBe5WiloB03oA2gIR0C2lfPi1iOOdX2UKGgGR0BVCGh24d6taAdLgGgIR0C2liLehwl0dX2UKGgGR0BmlkRnOB1+aAdN6ANoCEdAtpZGp3os7XV9lChoBkdAY7CK4x1xKmgHTegDaAhHQLaWTqX4TK11fZQoaAZHQGOVpwS8J2NoB03oA2gIR0C2lnjAzpHJdX2UKGgGR0BhUlHtnf2saAdN6ANoCEdAtpZ+n0kGA3V9lChoBkdAXoX2FnIyTWgHTegDaAhHQLaWz3SKFZh1fZQoaAZHQGfzyncclw9oB03oA2gIR0C2ltapo9LYdX2UKGgGR0BkXQWnCO3laAdN6ANoCEdAtpbYVYZEUnV9lChoBkdAaCtBHCoCMmgHTegDaAhHQLaW//zasZJ1fZQoaAZHQGG6Ov2Xb/RoB03oA2gIR0C2l1zZL7GedX2UKGgGR0BlMSg7HQyAaAdN6ANoCEdAtpflA8jiXXV9lChoBkdAZWKCnxaxHGgHTegDaAhHQLaYPHAymAN1fZQoaAZHQGjpLP2PDHhoB03oA2gIR0C2mI+uRs/IdX2UKGgGR0BnkkFhXr+paAdN6ANoCEdAtpk9uivgWXV9lChoBkdAYvOtdzGPxWgHTegDaAhHQLaZchH9WIZ1fZQoaAZHQGaSR5TqB3BoB03oA2gIR0C2mcU0iyIIdX2UKGgGR0BnanLFGXolaAdN6ANoCEdAtpnLybx3FHV9lChoBkdAaH1icXm/32gHTegDaAhHQLaZ86XBxgl1fZQoaAZHQGYokmhM8HRoB03oA2gIR0C2mh5kkKNRdX2UKGgGR0Bg7vmFJxvOaAdN6ANoCEdAtpokFkhA4XV9lChoBkdAZq5oRqXWv2gHTegDaAhHQLaa+4Z/CqJ1fZQoaAZHQGTqbkGRmshoB03oA2gIR0C2mybIo3JgdX2UKGgGR0Blbrt7a7EpaAdN6ANoCEdAtpsq1eBxxXV9lChoBkdAaTnxI8QqZ2gHTegDaAhHQLabV14Pf9B1fZQoaAZHQGb1ZUcXFcZoB03oA2gIR0C2m9mHHmzTdX2UKGgGR0BnWoIY3vQXaAdN6ANoCEdAtpy14iX6ZnV9lChoBkdAYHr1HOKO1mgHTegDaAhHQLac47b+Lm91fZQoaAZHQGFWMKCxu89oB03oA2gIR0C2nUZCSidrdX2UKGgGR0BPKQswtapxaAdLnWgIR0C2nUgRoRI0dX2UKGgGR0BpJ8KiO/+LaAdN6ANoCEdAtp1wr7O3UnV9lChoBkdAZKbPTodMkGgHTegDaAhHQLaeG8WKuSx1fZQoaAZHQGF/ll9Sde9oB03oA2gIR0C2niQnlXA/dX2UKGgGR0BoQvb7CSA6aAdN6ANoCEdAtp6kaZQYUHV9lChoBkdAcEGunuRcNmgHTVUDaAhHQLafLFNL1291fZQoaAZHQGVluqNp/PRoB03oA2gIR0C2ny1BppN9dX2UKGgGR0BlLW/WUbDNaAdN6ANoCEdAtp9VUxVQynV9lChoBkdAZbyXRgJC0GgHTegDaAhHQLafXoegctJ1fZQoaAZHQGVP8wHqu8toB03oA2gIR0C2n68O09hadX2UKGgGR0BkfzENvwVkaAdN6ANoCEdAtp+4hdMTOHV9lChoBkdAaJqGgSOBD2gHTegDaAhHQLaf4EroW591fZQoaAZHQGd3tmlImPZoB03oA2gIR0C2oDyG34KydX2UKGgGR0BnjpmPHT7VaAdN6ANoCEdAtqCUYTCcgHV9lChoBkdAaVAoLG7z1GgHTegDaAhHQLag6RHf/FR1fZQoaAZHQG8QX36AOKBoB03FA2gIR0C2oRUSM98rdX2UKGgGR0BoM6QDFId3aAdN6ANoCEdAtqFHq9oN/nV9lChoBkdAZjCEi+tbLWgHTegDaAhHQLahSBuXNTt1fZQoaAZHQGLyLvLHMlloB03oA2gIR0C2oZdedCmedX2UKGgGR0Bh4Uqaw2VFaAdN6ANoCEdAtqHEAvL5h3V9lChoBkdAZKrnxri2lWgHTegDaAhHQLah+cPvrnl1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 80,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 512,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9tZWRpYS9mYXN0L2NvZGUvbGVhcm5pbmcvdmVudl9sZWFybmluZy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd2ecfd49d08a834706654f49dfabdd8039b186e41d0be9507a248d6c89e773
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:630ea412dfe93a1cdf23cd5b532d952ebdeda0226ed01dc62bba16e9812085bf
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.0+cu121
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
-
- OpenAI Gym: 0.
|
|
|
1 |
+
- OS: Linux-5.4.249-x86_64-with-glibc2.35 # 1 SMP Sun Jul 16 16:29:19 CEST 2023
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.0+cu121
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 276.
|
|
|
1 |
+
{"mean_reward": 276.76070385514106, "std_reward": 18.209824792029327, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-22T21:05:59.923981"}
|