DavidPL1 commited on
Commit
35cb56f
1 Parent(s): ebe1ceb

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1716844378.wallenstein ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da5fac2f6fdf8da55fcd08f5962271e53448952a2b19b7fe3a3a20ad0e010ac7
3
+ size 40
.summary/0/events.out.tfevents.1716844380.wallenstein ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dca2203279a7f44831d6c53e50816c3aa422e48830717cb3fb5d530ba6d5c70
3
+ size 40
.summary/0/events.out.tfevents.1716844561.wallenstein ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6937791aacd071136e1669e32d17578206f5b57f58127c57427e10ddc39e7a16
3
+ size 193055
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 12.63 +/- 5.37
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r DavidPL1/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000948_3883008_reward_22.181.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d00c5ba448a65eb52a71d00ba77d75be9665d5ab77d8750dc3abdaee1e55243
3
+ size 34929051
checkpoint_p0/checkpoint_000000539_2207744.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cf0f67ca22954ebe0d6a269fb75a942b91f39ae5942297c9326a53b50820efc
3
+ size 34929477
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9d1efe718816be8ae75ddb2045798b373dcc940d1a1327f07d503344b5b4a93
3
+ size 34929477
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/media/fast/code/learning/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
142
+ }
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbf2fc33560e2134cac2811ddcf485e499f699112159fdc74a322afb1f7cd002
3
+ size 24006025
sf_log.txt ADDED
@@ -0,0 +1,783 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-05-27 23:16:03,598][1934158] Saving configuration to /media/fast/code/learning/train_dir/default_experiment/config.json...
2
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 0 uses device cpu
3
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 1 uses device cpu
4
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 2 uses device cpu
5
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 3 uses device cpu
6
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 4 uses device cpu
7
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 5 uses device cpu
8
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 6 uses device cpu
9
+ [2024-05-27 23:16:03,599][1934158] Rollout worker 7 uses device cpu
10
+ [2024-05-27 23:16:03,623][1934158] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2024-05-27 23:16:03,623][1934158] InferenceWorker_p0-w0: min num requests: 2
12
+ [2024-05-27 23:16:03,635][1934158] Starting all processes...
13
+ [2024-05-27 23:16:03,635][1934158] Starting process learner_proc0
14
+ [2024-05-27 23:16:05,222][1934158] Starting all processes...
15
+ [2024-05-27 23:16:05,225][1934158] Starting process inference_proc0-0
16
+ [2024-05-27 23:16:05,225][1934158] Starting process rollout_proc0
17
+ [2024-05-27 23:16:05,225][1934158] Starting process rollout_proc1
18
+ [2024-05-27 23:16:05,225][1934270] Using GPUs [0] for process 0 (actually maps to GPUs [0])
19
+ [2024-05-27 23:16:05,225][1934270] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
20
+ [2024-05-27 23:16:05,225][1934158] Starting process rollout_proc2
21
+ [2024-05-27 23:16:05,225][1934158] Starting process rollout_proc3
22
+ [2024-05-27 23:16:05,227][1934158] Starting process rollout_proc4
23
+ [2024-05-27 23:16:05,228][1934158] Starting process rollout_proc5
24
+ [2024-05-27 23:16:05,235][1934270] Num visible devices: 1
25
+ [2024-05-27 23:16:05,228][1934158] Starting process rollout_proc6
26
+ [2024-05-27 23:16:05,231][1934158] Starting process rollout_proc7
27
+ [2024-05-27 23:16:05,252][1934270] Starting seed is not provided
28
+ [2024-05-27 23:16:05,252][1934270] Using GPUs [0] for process 0 (actually maps to GPUs [0])
29
+ [2024-05-27 23:16:05,252][1934270] Initializing actor-critic model on device cuda:0
30
+ [2024-05-27 23:16:05,252][1934270] RunningMeanStd input shape: (3, 72, 128)
31
+ [2024-05-27 23:16:05,253][1934270] RunningMeanStd input shape: (1,)
32
+ [2024-05-27 23:16:05,265][1934270] ConvEncoder: input_channels=3
33
+ [2024-05-27 23:16:05,383][1934270] Conv encoder output size: 512
34
+ [2024-05-27 23:16:05,383][1934270] Policy head output size: 512
35
+ [2024-05-27 23:16:05,396][1934270] Created Actor Critic model with architecture:
36
+ [2024-05-27 23:16:05,396][1934270] ActorCriticSharedWeights(
37
+ (obs_normalizer): ObservationNormalizer(
38
+ (running_mean_std): RunningMeanStdDictInPlace(
39
+ (running_mean_std): ModuleDict(
40
+ (obs): RunningMeanStdInPlace()
41
+ )
42
+ )
43
+ )
44
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
45
+ (encoder): VizdoomEncoder(
46
+ (basic_encoder): ConvEncoder(
47
+ (enc): RecursiveScriptModule(
48
+ original_name=ConvEncoderImpl
49
+ (conv_head): RecursiveScriptModule(
50
+ original_name=Sequential
51
+ (0): RecursiveScriptModule(original_name=Conv2d)
52
+ (1): RecursiveScriptModule(original_name=ELU)
53
+ (2): RecursiveScriptModule(original_name=Conv2d)
54
+ (3): RecursiveScriptModule(original_name=ELU)
55
+ (4): RecursiveScriptModule(original_name=Conv2d)
56
+ (5): RecursiveScriptModule(original_name=ELU)
57
+ )
58
+ (mlp_layers): RecursiveScriptModule(
59
+ original_name=Sequential
60
+ (0): RecursiveScriptModule(original_name=Linear)
61
+ (1): RecursiveScriptModule(original_name=ELU)
62
+ )
63
+ )
64
+ )
65
+ )
66
+ (core): ModelCoreRNN(
67
+ (core): GRU(512, 512)
68
+ )
69
+ (decoder): MlpDecoder(
70
+ (mlp): Identity()
71
+ )
72
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
73
+ (action_parameterization): ActionParameterizationDefault(
74
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
75
+ )
76
+ )
77
+ [2024-05-27 23:16:05,572][1934270] Using optimizer <class 'torch.optim.adam.Adam'>
78
+ [2024-05-27 23:16:06,494][1934270] No checkpoints found
79
+ [2024-05-27 23:16:06,494][1934270] Did not load from checkpoint, starting from scratch!
80
+ [2024-05-27 23:16:06,497][1934270] Initialized policy 0 weights for model version 0
81
+ [2024-05-27 23:16:06,525][1934270] LearnerWorker_p0 finished initialization!
82
+ [2024-05-27 23:16:06,525][1934270] Using GPUs [0] for process 0 (actually maps to GPUs [0])
83
+ [2024-05-27 23:16:09,677][1934319] Worker 3 uses CPU cores [6, 7]
84
+ [2024-05-27 23:16:09,679][1934318] Worker 2 uses CPU cores [4, 5]
85
+ [2024-05-27 23:16:09,679][1934337] Worker 6 uses CPU cores [12, 13]
86
+ [2024-05-27 23:16:09,691][1934315] Using GPUs [0] for process 0 (actually maps to GPUs [0])
87
+ [2024-05-27 23:16:09,691][1934315] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
88
+ [2024-05-27 23:16:09,696][1934316] Worker 0 uses CPU cores [0, 1]
89
+ [2024-05-27 23:16:09,715][1934315] Num visible devices: 1
90
+ [2024-05-27 23:16:09,755][1934320] Worker 4 uses CPU cores [8, 9]
91
+ [2024-05-27 23:16:09,759][1934317] Worker 1 uses CPU cores [2, 3]
92
+ [2024-05-27 23:16:09,760][1934336] Worker 5 uses CPU cores [10, 11]
93
+ [2024-05-27 23:16:09,766][1934158] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
94
+ [2024-05-27 23:16:09,769][1934342] Worker 7 uses CPU cores [14, 15]
95
+ [2024-05-27 23:16:09,810][1934315] RunningMeanStd input shape: (3, 72, 128)
96
+ [2024-05-27 23:16:09,811][1934315] RunningMeanStd input shape: (1,)
97
+ [2024-05-27 23:16:09,820][1934315] ConvEncoder: input_channels=3
98
+ [2024-05-27 23:16:09,897][1934315] Conv encoder output size: 512
99
+ [2024-05-27 23:16:09,898][1934315] Policy head output size: 512
100
+ [2024-05-27 23:16:09,948][1934158] Inference worker 0-0 is ready!
101
+ [2024-05-27 23:16:09,948][1934158] All inference workers are ready! Signal rollout workers to start!
102
+ [2024-05-27 23:16:09,966][1934316] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2024-05-27 23:16:09,966][1934319] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2024-05-27 23:16:09,966][1934320] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2024-05-27 23:16:09,966][1934318] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2024-05-27 23:16:09,966][1934342] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2024-05-27 23:16:09,966][1934336] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2024-05-27 23:16:09,966][1934337] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2024-05-27 23:16:09,966][1934317] Doom resolution: 160x120, resize resolution: (128, 72)
110
+ [2024-05-27 23:16:10,026][1934319] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
111
+ [2024-05-27 23:16:10,027][1934319] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
112
+ Traceback (most recent call last):
113
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
114
+ self.game.init()
115
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
116
+
117
+ During handling of the above exception, another exception occurred:
118
+
119
+ Traceback (most recent call last):
120
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
121
+ slot_callable(*args)
122
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
123
+ env_runner.init(self.timing)
124
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
125
+ self._reset()
126
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
127
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
128
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
129
+ return self.env.reset(seed=seed, options=options)
130
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
131
+ obs, info = self.env.reset(**kwargs)
132
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
133
+ obs, info = self.env.reset(**kwargs)
134
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
135
+ return self.env.reset(**kwargs)
136
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/gymnasium/core.py", line 462, in reset
137
+ obs, info = self.env.reset(seed=seed, options=options)
138
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
139
+ obs, info = self.env.reset(**kwargs)
140
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
141
+ return self.env.reset(seed=seed, options=options)
142
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
143
+ return self.env.reset(**kwargs)
144
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
145
+ self._ensure_initialized()
146
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
147
+ self.initialize()
148
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
149
+ self._game_init()
150
+ File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
151
+ raise EnvCriticalError()
152
+ sample_factory.envs.env_utils.EnvCriticalError
153
+ [2024-05-27 23:16:10,029][1934319] Unhandled exception in evt loop rollout_proc3_evt_loop
154
+ [2024-05-27 23:16:10,583][1934337] Decorrelating experience for 0 frames...
155
+ [2024-05-27 23:16:10,583][1934342] Decorrelating experience for 0 frames...
156
+ [2024-05-27 23:16:10,657][1934318] Decorrelating experience for 0 frames...
157
+ [2024-05-27 23:16:10,916][1934342] Decorrelating experience for 32 frames...
158
+ [2024-05-27 23:16:11,000][1934316] Decorrelating experience for 0 frames...
159
+ [2024-05-27 23:16:11,225][1934158] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
160
+ [2024-05-27 23:16:11,427][1934337] Decorrelating experience for 32 frames...
161
+ [2024-05-27 23:16:11,428][1934316] Decorrelating experience for 32 frames...
162
+ [2024-05-27 23:16:11,606][1934320] Decorrelating experience for 0 frames...
163
+ [2024-05-27 23:16:11,882][1934316] Decorrelating experience for 64 frames...
164
+ [2024-05-27 23:16:12,052][1934342] Decorrelating experience for 64 frames...
165
+ [2024-05-27 23:16:12,155][1934320] Decorrelating experience for 32 frames...
166
+ [2024-05-27 23:16:12,672][1934316] Decorrelating experience for 96 frames...
167
+ [2024-05-27 23:16:12,755][1934337] Decorrelating experience for 64 frames...
168
+ [2024-05-27 23:16:12,756][1934318] Decorrelating experience for 32 frames...
169
+ [2024-05-27 23:16:12,831][1934317] Decorrelating experience for 0 frames...
170
+ [2024-05-27 23:16:13,085][1934342] Decorrelating experience for 96 frames...
171
+ [2024-05-27 23:16:13,412][1934320] Decorrelating experience for 64 frames...
172
+ [2024-05-27 23:16:13,493][1934337] Decorrelating experience for 96 frames...
173
+ [2024-05-27 23:16:13,592][1934318] Decorrelating experience for 64 frames...
174
+ [2024-05-27 23:16:13,763][1934336] Decorrelating experience for 0 frames...
175
+ [2024-05-27 23:16:14,101][1934317] Decorrelating experience for 32 frames...
176
+ [2024-05-27 23:16:14,182][1934318] Decorrelating experience for 96 frames...
177
+ [2024-05-27 23:16:14,425][1934320] Decorrelating experience for 96 frames...
178
+ [2024-05-27 23:16:14,429][1934336] Decorrelating experience for 32 frames...
179
+ [2024-05-27 23:16:14,657][1934317] Decorrelating experience for 64 frames...
180
+ [2024-05-27 23:16:14,666][1934270] Signal inference workers to stop experience collection...
181
+ [2024-05-27 23:16:14,670][1934315] InferenceWorker_p0-w0: stopping experience collection
182
+ [2024-05-27 23:16:14,811][1934336] Decorrelating experience for 64 frames...
183
+ [2024-05-27 23:16:14,967][1934317] Decorrelating experience for 96 frames...
184
+ [2024-05-27 23:16:15,277][1934336] Decorrelating experience for 96 frames...
185
+ [2024-05-27 23:16:15,790][1934270] Signal inference workers to resume experience collection...
186
+ [2024-05-27 23:16:15,790][1934315] InferenceWorker_p0-w0: resuming experience collection
187
+ [2024-05-27 23:16:16,225][1934158] Fps is (10 sec: 1902.6, 60 sec: 1902.6, 300 sec: 1902.6). Total num frames: 12288. Throughput: 0: 379.3. Samples: 2450. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
188
+ [2024-05-27 23:16:16,225][1934158] Avg episode reward: [(0, '3.187')]
189
+ [2024-05-27 23:16:17,981][1934315] Updated weights for policy 0, policy_version 10 (0.0101)
190
+ [2024-05-27 23:16:19,839][1934315] Updated weights for policy 0, policy_version 20 (0.0007)
191
+ [2024-05-27 23:16:21,225][1934158] Fps is (10 sec: 11059.1, 60 sec: 9651.5, 300 sec: 9651.5). Total num frames: 110592. Throughput: 0: 1415.4. Samples: 16218. Policy #0 lag: (min: 0.0, avg: 0.5, max: 3.0)
192
+ [2024-05-27 23:16:21,225][1934158] Avg episode reward: [(0, '4.379')]
193
+ [2024-05-27 23:16:21,228][1934270] Saving new best policy, reward=4.379!
194
+ [2024-05-27 23:16:21,659][1934315] Updated weights for policy 0, policy_version 30 (0.0007)
195
+ [2024-05-27 23:16:23,614][1934315] Updated weights for policy 0, policy_version 40 (0.0008)
196
+ [2024-05-27 23:16:23,619][1934158] Heartbeat connected on Batcher_0
197
+ [2024-05-27 23:16:23,621][1934158] Heartbeat connected on LearnerWorker_p0
198
+ [2024-05-27 23:16:23,625][1934158] Heartbeat connected on RolloutWorker_w0
199
+ [2024-05-27 23:16:23,626][1934158] Heartbeat connected on InferenceWorker_p0-w0
200
+ [2024-05-27 23:16:23,627][1934158] Heartbeat connected on RolloutWorker_w1
201
+ [2024-05-27 23:16:23,632][1934158] Heartbeat connected on RolloutWorker_w4
202
+ [2024-05-27 23:16:23,632][1934158] Heartbeat connected on RolloutWorker_w5
203
+ [2024-05-27 23:16:23,634][1934158] Heartbeat connected on RolloutWorker_w6
204
+ [2024-05-27 23:16:23,635][1934158] Heartbeat connected on RolloutWorker_w2
205
+ [2024-05-27 23:16:23,636][1934158] Heartbeat connected on RolloutWorker_w7
206
+ [2024-05-27 23:16:25,556][1934315] Updated weights for policy 0, policy_version 50 (0.0012)
207
+ [2024-05-27 23:16:26,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 13190.0, 300 sec: 13190.0). Total num frames: 217088. Throughput: 0: 2945.8. Samples: 48484. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
208
+ [2024-05-27 23:16:26,225][1934158] Avg episode reward: [(0, '4.620')]
209
+ [2024-05-27 23:16:26,225][1934270] Saving new best policy, reward=4.620!
210
+ [2024-05-27 23:16:27,524][1934315] Updated weights for policy 0, policy_version 60 (0.0011)
211
+ [2024-05-27 23:16:29,497][1934315] Updated weights for policy 0, policy_version 70 (0.0007)
212
+ [2024-05-27 23:16:31,225][1934158] Fps is (10 sec: 20889.7, 60 sec: 14888.7, 300 sec: 14888.7). Total num frames: 319488. Throughput: 0: 3703.7. Samples: 79476. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
213
+ [2024-05-27 23:16:31,225][1934158] Avg episode reward: [(0, '4.594')]
214
+ [2024-05-27 23:16:31,523][1934315] Updated weights for policy 0, policy_version 80 (0.0007)
215
+ [2024-05-27 23:16:33,629][1934315] Updated weights for policy 0, policy_version 90 (0.0007)
216
+ [2024-05-27 23:16:35,621][1934315] Updated weights for policy 0, policy_version 100 (0.0007)
217
+ [2024-05-27 23:16:36,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 15945.3, 300 sec: 15945.3). Total num frames: 421888. Throughput: 0: 3572.4. Samples: 94520. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
218
+ [2024-05-27 23:16:36,225][1934158] Avg episode reward: [(0, '4.672')]
219
+ [2024-05-27 23:16:36,225][1934270] Saving new best policy, reward=4.672!
220
+ [2024-05-27 23:16:37,650][1934315] Updated weights for policy 0, policy_version 110 (0.0007)
221
+ [2024-05-27 23:16:39,626][1934315] Updated weights for policy 0, policy_version 120 (0.0008)
222
+ [2024-05-27 23:16:41,225][1934158] Fps is (10 sec: 20070.3, 60 sec: 16535.8, 300 sec: 16535.8). Total num frames: 520192. Throughput: 0: 3978.1. Samples: 125144. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
223
+ [2024-05-27 23:16:41,225][1934158] Avg episode reward: [(0, '4.368')]
224
+ [2024-05-27 23:16:41,688][1934315] Updated weights for policy 0, policy_version 130 (0.0007)
225
+ [2024-05-27 23:16:43,620][1934315] Updated weights for policy 0, policy_version 140 (0.0007)
226
+ [2024-05-27 23:16:45,415][1934315] Updated weights for policy 0, policy_version 150 (0.0007)
227
+ [2024-05-27 23:16:46,225][1934158] Fps is (10 sec: 20889.6, 60 sec: 17301.4, 300 sec: 17301.4). Total num frames: 630784. Throughput: 0: 4313.8. Samples: 157276. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
228
+ [2024-05-27 23:16:46,225][1934158] Avg episode reward: [(0, '4.638')]
229
+ [2024-05-27 23:16:47,205][1934315] Updated weights for policy 0, policy_version 160 (0.0007)
230
+ [2024-05-27 23:16:48,998][1934315] Updated weights for policy 0, policy_version 170 (0.0010)
231
+ [2024-05-27 23:16:50,924][1934315] Updated weights for policy 0, policy_version 180 (0.0007)
232
+ [2024-05-27 23:16:51,225][1934158] Fps is (10 sec: 22118.5, 60 sec: 17882.4, 300 sec: 17882.4). Total num frames: 741376. Throughput: 0: 4207.1. Samples: 174418. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
233
+ [2024-05-27 23:16:51,225][1934158] Avg episode reward: [(0, '4.486')]
234
+ [2024-05-27 23:16:52,935][1934315] Updated weights for policy 0, policy_version 190 (0.0007)
235
+ [2024-05-27 23:16:54,845][1934315] Updated weights for policy 0, policy_version 200 (0.0008)
236
+ [2024-05-27 23:16:56,225][1934158] Fps is (10 sec: 21708.7, 60 sec: 18250.1, 300 sec: 18250.1). Total num frames: 847872. Throughput: 0: 4577.8. Samples: 206002. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
237
+ [2024-05-27 23:16:56,225][1934158] Avg episode reward: [(0, '4.466')]
238
+ [2024-05-27 23:16:56,781][1934315] Updated weights for policy 0, policy_version 210 (0.0007)
239
+ [2024-05-27 23:16:58,717][1934315] Updated weights for policy 0, policy_version 220 (0.0008)
240
+ [2024-05-27 23:17:00,636][1934315] Updated weights for policy 0, policy_version 230 (0.0007)
241
+ [2024-05-27 23:17:01,225][1934158] Fps is (10 sec: 20889.6, 60 sec: 18466.8, 300 sec: 18466.8). Total num frames: 950272. Throughput: 0: 5229.4. Samples: 237774. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
242
+ [2024-05-27 23:17:01,225][1934158] Avg episode reward: [(0, '4.450')]
243
+ [2024-05-27 23:17:02,613][1934315] Updated weights for policy 0, policy_version 240 (0.0008)
244
+ [2024-05-27 23:17:04,662][1934315] Updated weights for policy 0, policy_version 250 (0.0007)
245
+ [2024-05-27 23:17:06,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 18645.1, 300 sec: 18645.1). Total num frames: 1052672. Throughput: 0: 5261.9. Samples: 253004. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
246
+ [2024-05-27 23:17:06,225][1934158] Avg episode reward: [(0, '4.710')]
247
+ [2024-05-27 23:17:06,225][1934270] Saving new best policy, reward=4.710!
248
+ [2024-05-27 23:17:06,803][1934315] Updated weights for policy 0, policy_version 260 (0.0011)
249
+ [2024-05-27 23:17:08,893][1934315] Updated weights for policy 0, policy_version 270 (0.0007)
250
+ [2024-05-27 23:17:10,844][1934315] Updated weights for policy 0, policy_version 280 (0.0012)
251
+ [2024-05-27 23:17:11,225][1934158] Fps is (10 sec: 20070.2, 60 sec: 19182.9, 300 sec: 18727.7). Total num frames: 1150976. Throughput: 0: 5203.4. Samples: 282636. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
252
+ [2024-05-27 23:17:11,225][1934158] Avg episode reward: [(0, '4.512')]
253
+ [2024-05-27 23:17:12,691][1934315] Updated weights for policy 0, policy_version 290 (0.0007)
254
+ [2024-05-27 23:17:14,604][1934315] Updated weights for policy 0, policy_version 300 (0.0007)
255
+ [2024-05-27 23:17:16,225][1934158] Fps is (10 sec: 21299.1, 60 sec: 20889.6, 300 sec: 19044.4). Total num frames: 1265664. Throughput: 0: 5248.3. Samples: 315650. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
256
+ [2024-05-27 23:17:16,225][1934158] Avg episode reward: [(0, '4.587')]
257
+ [2024-05-27 23:17:16,410][1934315] Updated weights for policy 0, policy_version 310 (0.0007)
258
+ [2024-05-27 23:17:18,299][1934315] Updated weights for policy 0, policy_version 320 (0.0008)
259
+ [2024-05-27 23:17:20,246][1934315] Updated weights for policy 0, policy_version 330 (0.0007)
260
+ [2024-05-27 23:17:21,225][1934158] Fps is (10 sec: 22118.6, 60 sec: 21026.2, 300 sec: 19202.2). Total num frames: 1372160. Throughput: 0: 5274.4. Samples: 331866. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
261
+ [2024-05-27 23:17:21,225][1934158] Avg episode reward: [(0, '4.428')]
262
+ [2024-05-27 23:17:22,228][1934315] Updated weights for policy 0, policy_version 340 (0.0007)
263
+ [2024-05-27 23:17:24,250][1934315] Updated weights for policy 0, policy_version 350 (0.0007)
264
+ [2024-05-27 23:17:26,216][1934315] Updated weights for policy 0, policy_version 360 (0.0008)
265
+ [2024-05-27 23:17:26,225][1934158] Fps is (10 sec: 20889.8, 60 sec: 20957.9, 300 sec: 19285.8). Total num frames: 1474560. Throughput: 0: 5278.6. Samples: 362680. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
266
+ [2024-05-27 23:17:26,225][1934158] Avg episode reward: [(0, '4.760')]
267
+ [2024-05-27 23:17:26,225][1934270] Saving new best policy, reward=4.760!
268
+ [2024-05-27 23:17:28,176][1934315] Updated weights for policy 0, policy_version 370 (0.0007)
269
+ [2024-05-27 23:17:30,122][1934315] Updated weights for policy 0, policy_version 380 (0.0007)
270
+ [2024-05-27 23:17:31,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 20957.9, 300 sec: 19359.1). Total num frames: 1576960. Throughput: 0: 5261.3. Samples: 394036. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
271
+ [2024-05-27 23:17:31,225][1934158] Avg episode reward: [(0, '5.042')]
272
+ [2024-05-27 23:17:31,227][1934270] Saving new best policy, reward=5.042!
273
+ [2024-05-27 23:17:32,083][1934315] Updated weights for policy 0, policy_version 390 (0.0007)
274
+ [2024-05-27 23:17:33,997][1934315] Updated weights for policy 0, policy_version 400 (0.0008)
275
+ [2024-05-27 23:17:35,937][1934315] Updated weights for policy 0, policy_version 410 (0.0008)
276
+ [2024-05-27 23:17:36,225][1934158] Fps is (10 sec: 20889.5, 60 sec: 21026.1, 300 sec: 19471.3). Total num frames: 1683456. Throughput: 0: 5235.8. Samples: 410028. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
277
+ [2024-05-27 23:17:36,225][1934158] Avg episode reward: [(0, '4.829')]
278
+ [2024-05-27 23:17:37,913][1934315] Updated weights for policy 0, policy_version 420 (0.0007)
279
+ [2024-05-27 23:17:39,821][1934315] Updated weights for policy 0, policy_version 430 (0.0007)
280
+ [2024-05-27 23:17:41,225][1934158] Fps is (10 sec: 21299.2, 60 sec: 21162.7, 300 sec: 19571.2). Total num frames: 1789952. Throughput: 0: 5239.0. Samples: 441758. Policy #0 lag: (min: 0.0, avg: 0.6, max: 3.0)
281
+ [2024-05-27 23:17:41,225][1934158] Avg episode reward: [(0, '5.811')]
282
+ [2024-05-27 23:17:41,227][1934270] Saving new best policy, reward=5.811!
283
+ [2024-05-27 23:17:41,621][1934315] Updated weights for policy 0, policy_version 440 (0.0007)
284
+ [2024-05-27 23:17:43,431][1934315] Updated weights for policy 0, policy_version 450 (0.0008)
285
+ [2024-05-27 23:17:45,265][1934315] Updated weights for policy 0, policy_version 460 (0.0007)
286
+ [2024-05-27 23:17:46,225][1934158] Fps is (10 sec: 22118.4, 60 sec: 21230.9, 300 sec: 19745.7). Total num frames: 1904640. Throughput: 0: 5286.2. Samples: 475652. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
287
+ [2024-05-27 23:17:46,225][1934158] Avg episode reward: [(0, '6.064')]
288
+ [2024-05-27 23:17:46,225][1934270] Saving new best policy, reward=6.064!
289
+ [2024-05-27 23:17:47,258][1934315] Updated weights for policy 0, policy_version 470 (0.0007)
290
+ [2024-05-27 23:17:49,311][1934315] Updated weights for policy 0, policy_version 480 (0.0007)
291
+ [2024-05-27 23:17:51,225][1934158] Fps is (10 sec: 21299.0, 60 sec: 21026.1, 300 sec: 19741.5). Total num frames: 2002944. Throughput: 0: 5272.8. Samples: 490282. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
292
+ [2024-05-27 23:17:51,225][1934158] Avg episode reward: [(0, '8.117')]
293
+ [2024-05-27 23:17:51,228][1934270] Saving new best policy, reward=8.117!
294
+ [2024-05-27 23:17:51,309][1934315] Updated weights for policy 0, policy_version 490 (0.0007)
295
+ [2024-05-27 23:17:53,208][1934315] Updated weights for policy 0, policy_version 500 (0.0007)
296
+ [2024-05-27 23:17:55,270][1934315] Updated weights for policy 0, policy_version 510 (0.0007)
297
+ [2024-05-27 23:17:56,225][1934158] Fps is (10 sec: 20070.4, 60 sec: 20957.9, 300 sec: 19776.2). Total num frames: 2105344. Throughput: 0: 5304.0. Samples: 521316. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
298
+ [2024-05-27 23:17:56,225][1934158] Avg episode reward: [(0, '9.056')]
299
+ [2024-05-27 23:17:56,225][1934270] Saving new best policy, reward=9.056!
300
+ [2024-05-27 23:17:57,265][1934315] Updated weights for policy 0, policy_version 520 (0.0007)
301
+ [2024-05-27 23:17:59,319][1934315] Updated weights for policy 0, policy_version 530 (0.0011)
302
+ [2024-05-27 23:18:01,225][1934158] Fps is (10 sec: 20479.9, 60 sec: 20957.8, 300 sec: 19807.7). Total num frames: 2207744. Throughput: 0: 5240.7. Samples: 551482. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
303
+ [2024-05-27 23:18:01,225][1934158] Avg episode reward: [(0, '11.238')]
304
+ [2024-05-27 23:18:01,228][1934270] Saving /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000539_2207744.pth...
305
+ [2024-05-27 23:18:01,267][1934270] Saving new best policy, reward=11.238!
306
+ [2024-05-27 23:18:01,335][1934315] Updated weights for policy 0, policy_version 540 (0.0007)
307
+ [2024-05-27 23:18:03,448][1934315] Updated weights for policy 0, policy_version 550 (0.0012)
308
+ [2024-05-27 23:18:05,446][1934315] Updated weights for policy 0, policy_version 560 (0.0007)
309
+ [2024-05-27 23:18:06,225][1934158] Fps is (10 sec: 20070.5, 60 sec: 20889.6, 300 sec: 19801.5). Total num frames: 2306048. Throughput: 0: 5211.2. Samples: 566368. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
310
+ [2024-05-27 23:18:06,225][1934158] Avg episode reward: [(0, '11.336')]
311
+ [2024-05-27 23:18:06,225][1934270] Saving new best policy, reward=11.336!
312
+ [2024-05-27 23:18:07,421][1934315] Updated weights for policy 0, policy_version 570 (0.0007)
313
+ [2024-05-27 23:18:09,239][1934315] Updated weights for policy 0, policy_version 580 (0.0009)
314
+ [2024-05-27 23:18:11,047][1934315] Updated weights for policy 0, policy_version 590 (0.0007)
315
+ [2024-05-27 23:18:11,224][1934158] Fps is (10 sec: 21299.6, 60 sec: 21162.7, 300 sec: 19930.6). Total num frames: 2420736. Throughput: 0: 5245.1. Samples: 598710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
316
+ [2024-05-27 23:18:11,225][1934158] Avg episode reward: [(0, '14.662')]
317
+ [2024-05-27 23:18:11,227][1934270] Saving new best policy, reward=14.662!
318
+ [2024-05-27 23:18:12,854][1934315] Updated weights for policy 0, policy_version 600 (0.0009)
319
+ [2024-05-27 23:18:14,740][1934315] Updated weights for policy 0, policy_version 610 (0.0007)
320
+ [2024-05-27 23:18:16,225][1934158] Fps is (10 sec: 22118.2, 60 sec: 21026.1, 300 sec: 19984.7). Total num frames: 2527232. Throughput: 0: 5272.6. Samples: 631302. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
321
+ [2024-05-27 23:18:16,225][1934158] Avg episode reward: [(0, '15.552')]
322
+ [2024-05-27 23:18:16,225][1934270] Saving new best policy, reward=15.552!
323
+ [2024-05-27 23:18:16,763][1934315] Updated weights for policy 0, policy_version 620 (0.0011)
324
+ [2024-05-27 23:18:18,712][1934315] Updated weights for policy 0, policy_version 630 (0.0012)
325
+ [2024-05-27 23:18:20,722][1934315] Updated weights for policy 0, policy_version 640 (0.0012)
326
+ [2024-05-27 23:18:21,225][1934158] Fps is (10 sec: 20889.2, 60 sec: 20957.8, 300 sec: 20003.5). Total num frames: 2629632. Throughput: 0: 5265.6. Samples: 646982. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
327
+ [2024-05-27 23:18:21,225][1934158] Avg episode reward: [(0, '15.319')]
328
+ [2024-05-27 23:18:22,704][1934315] Updated weights for policy 0, policy_version 650 (0.0012)
329
+ [2024-05-27 23:18:24,737][1934315] Updated weights for policy 0, policy_version 660 (0.0009)
330
+ [2024-05-27 23:18:26,225][1934158] Fps is (10 sec: 20480.1, 60 sec: 20957.9, 300 sec: 20021.0). Total num frames: 2732032. Throughput: 0: 5239.9. Samples: 677552. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
331
+ [2024-05-27 23:18:26,225][1934158] Avg episode reward: [(0, '18.705')]
332
+ [2024-05-27 23:18:26,225][1934270] Saving new best policy, reward=18.705!
333
+ [2024-05-27 23:18:26,687][1934315] Updated weights for policy 0, policy_version 670 (0.0007)
334
+ [2024-05-27 23:18:28,690][1934315] Updated weights for policy 0, policy_version 680 (0.0007)
335
+ [2024-05-27 23:18:30,666][1934315] Updated weights for policy 0, policy_version 690 (0.0007)
336
+ [2024-05-27 23:18:31,225][1934158] Fps is (10 sec: 20480.2, 60 sec: 20957.9, 300 sec: 20037.2). Total num frames: 2834432. Throughput: 0: 5177.5. Samples: 708638. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
337
+ [2024-05-27 23:18:31,225][1934158] Avg episode reward: [(0, '19.747')]
338
+ [2024-05-27 23:18:31,228][1934270] Saving new best policy, reward=19.747!
339
+ [2024-05-27 23:18:32,744][1934315] Updated weights for policy 0, policy_version 700 (0.0007)
340
+ [2024-05-27 23:18:34,708][1934315] Updated weights for policy 0, policy_version 710 (0.0008)
341
+ [2024-05-27 23:18:36,225][1934158] Fps is (10 sec: 20479.8, 60 sec: 20889.6, 300 sec: 20052.3). Total num frames: 2936832. Throughput: 0: 5187.1. Samples: 723702. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
342
+ [2024-05-27 23:18:36,225][1934158] Avg episode reward: [(0, '20.573')]
343
+ [2024-05-27 23:18:36,226][1934270] Saving new best policy, reward=20.573!
344
+ [2024-05-27 23:18:36,748][1934315] Updated weights for policy 0, policy_version 720 (0.0008)
345
+ [2024-05-27 23:18:38,561][1934315] Updated weights for policy 0, policy_version 730 (0.0008)
346
+ [2024-05-27 23:18:40,387][1934315] Updated weights for policy 0, policy_version 740 (0.0008)
347
+ [2024-05-27 23:18:41,225][1934158] Fps is (10 sec: 21299.2, 60 sec: 20957.9, 300 sec: 20120.5). Total num frames: 3047424. Throughput: 0: 5210.7. Samples: 755796. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
348
+ [2024-05-27 23:18:41,225][1934158] Avg episode reward: [(0, '21.032')]
349
+ [2024-05-27 23:18:41,228][1934270] Saving new best policy, reward=21.032!
350
+ [2024-05-27 23:18:42,185][1934315] Updated weights for policy 0, policy_version 750 (0.0007)
351
+ [2024-05-27 23:18:44,027][1934315] Updated weights for policy 0, policy_version 760 (0.0007)
352
+ [2024-05-27 23:18:45,915][1934315] Updated weights for policy 0, policy_version 770 (0.0007)
353
+ [2024-05-27 23:18:46,225][1934158] Fps is (10 sec: 22118.7, 60 sec: 20889.6, 300 sec: 20184.4). Total num frames: 3158016. Throughput: 0: 5280.4. Samples: 789100. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
354
+ [2024-05-27 23:18:46,225][1934158] Avg episode reward: [(0, '18.887')]
355
+ [2024-05-27 23:18:47,935][1934315] Updated weights for policy 0, policy_version 780 (0.0007)
356
+ [2024-05-27 23:18:49,831][1934315] Updated weights for policy 0, policy_version 790 (0.0007)
357
+ [2024-05-27 23:18:51,225][1934158] Fps is (10 sec: 21708.7, 60 sec: 21026.2, 300 sec: 20218.9). Total num frames: 3264512. Throughput: 0: 5299.6. Samples: 804852. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
358
+ [2024-05-27 23:18:51,225][1934158] Avg episode reward: [(0, '17.324')]
359
+ [2024-05-27 23:18:51,873][1934315] Updated weights for policy 0, policy_version 800 (0.0012)
360
+ [2024-05-27 23:18:53,869][1934315] Updated weights for policy 0, policy_version 810 (0.0008)
361
+ [2024-05-27 23:18:55,945][1934315] Updated weights for policy 0, policy_version 820 (0.0011)
362
+ [2024-05-27 23:18:56,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 20957.9, 300 sec: 20202.1). Total num frames: 3362816. Throughput: 0: 5260.6. Samples: 835438. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
363
+ [2024-05-27 23:18:56,225][1934158] Avg episode reward: [(0, '17.131')]
364
+ [2024-05-27 23:18:57,993][1934315] Updated weights for policy 0, policy_version 830 (0.0016)
365
+ [2024-05-27 23:18:59,990][1934315] Updated weights for policy 0, policy_version 840 (0.0007)
366
+ [2024-05-27 23:19:01,225][1934158] Fps is (10 sec: 20070.4, 60 sec: 20957.9, 300 sec: 20210.2). Total num frames: 3465216. Throughput: 0: 5207.4. Samples: 865636. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
367
+ [2024-05-27 23:19:01,225][1934158] Avg episode reward: [(0, '20.196')]
368
+ [2024-05-27 23:19:02,004][1934315] Updated weights for policy 0, policy_version 850 (0.0008)
369
+ [2024-05-27 23:19:04,080][1934315] Updated weights for policy 0, policy_version 860 (0.0007)
370
+ [2024-05-27 23:19:05,800][1934315] Updated weights for policy 0, policy_version 870 (0.0007)
371
+ [2024-05-27 23:19:06,225][1934158] Fps is (10 sec: 20889.5, 60 sec: 21094.4, 300 sec: 20241.1). Total num frames: 3571712. Throughput: 0: 5194.5. Samples: 880732. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
372
+ [2024-05-27 23:19:06,225][1934158] Avg episode reward: [(0, '21.470')]
373
+ [2024-05-27 23:19:06,225][1934270] Saving new best policy, reward=21.470!
374
+ [2024-05-27 23:19:07,672][1934315] Updated weights for policy 0, policy_version 880 (0.0008)
375
+ [2024-05-27 23:19:09,539][1934315] Updated weights for policy 0, policy_version 890 (0.0008)
376
+ [2024-05-27 23:19:11,225][1934158] Fps is (10 sec: 21708.9, 60 sec: 21026.1, 300 sec: 20292.8). Total num frames: 3682304. Throughput: 0: 5259.7. Samples: 914240. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
377
+ [2024-05-27 23:19:11,225][1934158] Avg episode reward: [(0, '21.748')]
378
+ [2024-05-27 23:19:11,228][1934270] Saving new best policy, reward=21.748!
379
+ [2024-05-27 23:19:11,365][1934315] Updated weights for policy 0, policy_version 900 (0.0007)
380
+ [2024-05-27 23:19:13,481][1934315] Updated weights for policy 0, policy_version 910 (0.0009)
381
+ [2024-05-27 23:19:15,430][1934315] Updated weights for policy 0, policy_version 920 (0.0008)
382
+ [2024-05-27 23:19:16,225][1934158] Fps is (10 sec: 20889.5, 60 sec: 20889.6, 300 sec: 20275.9). Total num frames: 3780608. Throughput: 0: 5263.5. Samples: 945494. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
383
+ [2024-05-27 23:19:16,225][1934158] Avg episode reward: [(0, '20.029')]
384
+ [2024-05-27 23:19:17,514][1934315] Updated weights for policy 0, policy_version 930 (0.0011)
385
+ [2024-05-27 23:19:19,529][1934315] Updated weights for policy 0, policy_version 940 (0.0008)
386
+ [2024-05-27 23:19:21,225][1934158] Fps is (10 sec: 20070.4, 60 sec: 20889.6, 300 sec: 20281.2). Total num frames: 3883008. Throughput: 0: 5255.3. Samples: 960192. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
387
+ [2024-05-27 23:19:21,225][1934158] Avg episode reward: [(0, '22.181')]
388
+ [2024-05-27 23:19:21,227][1934270] Saving new best policy, reward=22.181!
389
+ [2024-05-27 23:19:21,559][1934315] Updated weights for policy 0, policy_version 950 (0.0007)
390
+ [2024-05-27 23:19:23,512][1934315] Updated weights for policy 0, policy_version 960 (0.0007)
391
+ [2024-05-27 23:19:25,534][1934315] Updated weights for policy 0, policy_version 970 (0.0011)
392
+ [2024-05-27 23:19:26,225][1934158] Fps is (10 sec: 20480.2, 60 sec: 20889.6, 300 sec: 20286.3). Total num frames: 3985408. Throughput: 0: 5222.8. Samples: 990822. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
393
+ [2024-05-27 23:19:26,225][1934158] Avg episode reward: [(0, '19.642')]
394
+ [2024-05-27 23:19:27,196][1934158] Component Batcher_0 stopped!
395
+ [2024-05-27 23:19:27,196][1934270] Stopping Batcher_0...
396
+ [2024-05-27 23:19:27,196][1934158] Component RolloutWorker_w3 process died already! Don't wait for it.
397
+ [2024-05-27 23:19:27,196][1934270] Loop batcher_evt_loop terminating...
398
+ [2024-05-27 23:19:27,196][1934270] Saving /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
399
+ [2024-05-27 23:19:27,202][1934317] Stopping RolloutWorker_w1...
400
+ [2024-05-27 23:19:27,202][1934158] Component RolloutWorker_w1 stopped!
401
+ [2024-05-27 23:19:27,202][1934317] Loop rollout_proc1_evt_loop terminating...
402
+ [2024-05-27 23:19:27,202][1934320] Stopping RolloutWorker_w4...
403
+ [2024-05-27 23:19:27,202][1934158] Component RolloutWorker_w4 stopped!
404
+ [2024-05-27 23:19:27,202][1934316] Stopping RolloutWorker_w0...
405
+ [2024-05-27 23:19:27,202][1934336] Stopping RolloutWorker_w5...
406
+ [2024-05-27 23:19:27,203][1934320] Loop rollout_proc4_evt_loop terminating...
407
+ [2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w0 stopped!
408
+ [2024-05-27 23:19:27,203][1934316] Loop rollout_proc0_evt_loop terminating...
409
+ [2024-05-27 23:19:27,203][1934318] Stopping RolloutWorker_w2...
410
+ [2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w5 stopped!
411
+ [2024-05-27 23:19:27,203][1934336] Loop rollout_proc5_evt_loop terminating...
412
+ [2024-05-27 23:19:27,203][1934337] Stopping RolloutWorker_w6...
413
+ [2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w2 stopped!
414
+ [2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w6 stopped!
415
+ [2024-05-27 23:19:27,203][1934318] Loop rollout_proc2_evt_loop terminating...
416
+ [2024-05-27 23:19:27,203][1934337] Loop rollout_proc6_evt_loop terminating...
417
+ [2024-05-27 23:19:27,208][1934342] Stopping RolloutWorker_w7...
418
+ [2024-05-27 23:19:27,208][1934158] Component RolloutWorker_w7 stopped!
419
+ [2024-05-27 23:19:27,208][1934342] Loop rollout_proc7_evt_loop terminating...
420
+ [2024-05-27 23:19:27,210][1934315] Weights refcount: 2 0
421
+ [2024-05-27 23:19:27,250][1934270] Saving /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
422
+ [2024-05-27 23:19:27,261][1934315] Stopping InferenceWorker_p0-w0...
423
+ [2024-05-27 23:19:27,261][1934315] Loop inference_proc0-0_evt_loop terminating...
424
+ [2024-05-27 23:19:27,261][1934158] Component InferenceWorker_p0-w0 stopped!
425
+ [2024-05-27 23:19:27,311][1934270] Stopping LearnerWorker_p0...
426
+ [2024-05-27 23:19:27,311][1934158] Component LearnerWorker_p0 stopped!
427
+ [2024-05-27 23:19:27,311][1934270] Loop learner_proc0_evt_loop terminating...
428
+ [2024-05-27 23:19:27,312][1934158] Waiting for process learner_proc0 to stop...
429
+ [2024-05-27 23:19:27,998][1934158] Waiting for process inference_proc0-0 to join...
430
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc0 to join...
431
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc1 to join...
432
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc2 to join...
433
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc3 to join...
434
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc4 to join...
435
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc5 to join...
436
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc6 to join...
437
+ [2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc7 to join...
438
+ [2024-05-27 23:19:27,999][1934158] Batcher 0 profile tree view:
439
+ batching: 17.1563, releasing_batches: 0.0218
440
+ [2024-05-27 23:19:27,999][1934158] InferenceWorker_p0-w0 profile tree view:
441
+ wait_policy: 0.0000
442
+ wait_policy_total: 4.5927
443
+ update_model: 2.6467
444
+ weight_update: 0.0007
445
+ one_step: 0.0025
446
+ handle_policy_step: 180.1540
447
+ deserialize: 5.4368, stack: 0.9178, obs_to_device_normalize: 40.7850, forward: 100.2096, send_messages: 7.8527
448
+ prepare_outputs: 18.8993
449
+ to_cpu: 11.8170
450
+ [2024-05-27 23:19:27,999][1934158] Learner 0 profile tree view:
451
+ misc: 0.0033, prepare_batch: 6.9298
452
+ train: 19.9916
453
+ epoch_init: 0.0036, minibatch_init: 0.0045, losses_postprocess: 0.3051, kl_divergence: 0.3106, after_optimizer: 6.7727
454
+ calculate_losses: 8.3137
455
+ losses_init: 0.0021, forward_head: 0.5755, bptt_initial: 5.5591, tail: 0.4520, advantages_returns: 0.1178, losses: 0.7330
456
+ bptt: 0.7343
457
+ bptt_forward_core: 0.6989
458
+ update: 3.9895
459
+ clip: 0.4408
460
+ [2024-05-27 23:19:27,999][1934158] RolloutWorker_w0 profile tree view:
461
+ wait_for_trajectories: 0.1094, enqueue_policy_requests: 6.7447, env_step: 74.1145, overhead: 8.3155, complete_rollouts: 0.2030
462
+ save_policy_outputs: 6.8527
463
+ split_output_tensors: 3.2861
464
+ [2024-05-27 23:19:27,999][1934158] RolloutWorker_w7 profile tree view:
465
+ wait_for_trajectories: 0.1229, enqueue_policy_requests: 6.7854, env_step: 69.9361, overhead: 8.1086, complete_rollouts: 0.2114
466
+ save_policy_outputs: 6.5377
467
+ split_output_tensors: 3.1628
468
+ [2024-05-27 23:19:28,000][1934158] Loop Runner_EvtLoop terminating...
469
+ [2024-05-27 23:19:28,000][1934158] Runner profile tree view:
470
+ main_loop: 204.3645
471
+ [2024-05-27 23:19:28,000][1934158] Collected {0: 4005888}, FPS: 19601.7
472
+ [2024-05-27 23:19:28,286][1934158] Loading existing experiment configuration from /media/fast/code/learning/train_dir/default_experiment/config.json
473
+ [2024-05-27 23:19:28,286][1934158] Overriding arg 'num_workers' with value 1 passed from command line
474
+ [2024-05-27 23:19:28,286][1934158] Adding new argument 'no_render'=True that is not in the saved config file!
475
+ [2024-05-27 23:19:28,286][1934158] Adding new argument 'save_video'=True that is not in the saved config file!
476
+ [2024-05-27 23:19:28,286][1934158] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
477
+ [2024-05-27 23:19:28,286][1934158] Adding new argument 'video_name'=None that is not in the saved config file!
478
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
479
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
480
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'push_to_hub'=False that is not in the saved config file!
481
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'hf_repository'=None that is not in the saved config file!
482
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'policy_index'=0 that is not in the saved config file!
483
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
484
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'train_script'=None that is not in the saved config file!
485
+ [2024-05-27 23:19:28,287][1934158] Adding new argument 'enjoy_script'=None that is not in the saved config file!
486
+ [2024-05-27 23:19:28,287][1934158] Using frameskip 1 and render_action_repeat=4 for evaluation
487
+ [2024-05-27 23:19:28,294][1934158] Doom resolution: 160x120, resize resolution: (128, 72)
488
+ [2024-05-27 23:19:28,294][1934158] RunningMeanStd input shape: (3, 72, 128)
489
+ [2024-05-27 23:19:28,295][1934158] RunningMeanStd input shape: (1,)
490
+ [2024-05-27 23:19:28,301][1934158] ConvEncoder: input_channels=3
491
+ [2024-05-27 23:19:28,358][1934158] Conv encoder output size: 512
492
+ [2024-05-27 23:19:28,358][1934158] Policy head output size: 512
493
+ [2024-05-27 23:19:28,450][1934158] Loading state from checkpoint /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
494
+ [2024-05-27 23:19:29,259][1934158] Num frames 100...
495
+ [2024-05-27 23:19:29,371][1934158] Num frames 200...
496
+ [2024-05-27 23:19:29,454][1934158] Num frames 300...
497
+ [2024-05-27 23:19:29,532][1934158] Num frames 400...
498
+ [2024-05-27 23:19:29,631][1934158] Num frames 500...
499
+ [2024-05-27 23:19:29,698][1934158] Num frames 600...
500
+ [2024-05-27 23:19:29,791][1934158] Num frames 700...
501
+ [2024-05-27 23:19:29,862][1934158] Num frames 800...
502
+ [2024-05-27 23:19:29,927][1934158] Num frames 900...
503
+ [2024-05-27 23:19:29,998][1934158] Num frames 1000...
504
+ [2024-05-27 23:19:30,066][1934158] Num frames 1100...
505
+ [2024-05-27 23:19:30,177][1934158] Num frames 1200...
506
+ [2024-05-27 23:19:30,260][1934158] Num frames 1300...
507
+ [2024-05-27 23:19:30,323][1934158] Num frames 1400...
508
+ [2024-05-27 23:19:30,380][1934158] Avg episode rewards: #0: 36.080, true rewards: #0: 14.080
509
+ [2024-05-27 23:19:30,380][1934158] Avg episode reward: 36.080, avg true_objective: 14.080
510
+ [2024-05-27 23:19:30,437][1934158] Num frames 1500...
511
+ [2024-05-27 23:19:30,499][1934158] Num frames 1600...
512
+ [2024-05-27 23:19:30,558][1934158] Num frames 1700...
513
+ [2024-05-27 23:19:30,615][1934158] Num frames 1800...
514
+ [2024-05-27 23:19:30,674][1934158] Num frames 1900...
515
+ [2024-05-27 23:19:30,737][1934158] Num frames 2000...
516
+ [2024-05-27 23:19:30,840][1934158] Avg episode rewards: #0: 24.400, true rewards: #0: 10.400
517
+ [2024-05-27 23:19:30,840][1934158] Avg episode reward: 24.400, avg true_objective: 10.400
518
+ [2024-05-27 23:19:30,853][1934158] Num frames 2100...
519
+ [2024-05-27 23:19:30,916][1934158] Num frames 2200...
520
+ [2024-05-27 23:19:30,975][1934158] Num frames 2300...
521
+ [2024-05-27 23:19:31,035][1934158] Num frames 2400...
522
+ [2024-05-27 23:19:31,097][1934158] Num frames 2500...
523
+ [2024-05-27 23:19:31,155][1934158] Num frames 2600...
524
+ [2024-05-27 23:19:31,213][1934158] Num frames 2700...
525
+ [2024-05-27 23:19:31,271][1934158] Num frames 2800...
526
+ [2024-05-27 23:19:31,330][1934158] Num frames 2900...
527
+ [2024-05-27 23:19:31,392][1934158] Num frames 3000...
528
+ [2024-05-27 23:19:31,450][1934158] Num frames 3100...
529
+ [2024-05-27 23:19:31,505][1934158] Num frames 3200...
530
+ [2024-05-27 23:19:31,561][1934158] Num frames 3300...
531
+ [2024-05-27 23:19:31,668][1934158] Avg episode rewards: #0: 26.640, true rewards: #0: 11.307
532
+ [2024-05-27 23:19:31,668][1934158] Avg episode reward: 26.640, avg true_objective: 11.307
533
+ [2024-05-27 23:19:31,674][1934158] Num frames 3400...
534
+ [2024-05-27 23:19:31,733][1934158] Num frames 3500...
535
+ [2024-05-27 23:19:31,791][1934158] Num frames 3600...
536
+ [2024-05-27 23:19:31,849][1934158] Num frames 3700...
537
+ [2024-05-27 23:19:31,908][1934158] Num frames 3800...
538
+ [2024-05-27 23:19:31,961][1934158] Num frames 3900...
539
+ [2024-05-27 23:19:32,019][1934158] Num frames 4000...
540
+ [2024-05-27 23:19:32,075][1934158] Num frames 4100...
541
+ [2024-05-27 23:19:32,133][1934158] Num frames 4200...
542
+ [2024-05-27 23:19:32,237][1934158] Avg episode rewards: #0: 24.720, true rewards: #0: 10.720
543
+ [2024-05-27 23:19:32,237][1934158] Avg episode reward: 24.720, avg true_objective: 10.720
544
+ [2024-05-27 23:19:32,245][1934158] Num frames 4300...
545
+ [2024-05-27 23:19:32,301][1934158] Num frames 4400...
546
+ [2024-05-27 23:19:32,360][1934158] Num frames 4500...
547
+ [2024-05-27 23:19:32,418][1934158] Num frames 4600...
548
+ [2024-05-27 23:19:32,476][1934158] Num frames 4700...
549
+ [2024-05-27 23:19:32,545][1934158] Num frames 4800...
550
+ [2024-05-27 23:19:32,607][1934158] Num frames 4900...
551
+ [2024-05-27 23:19:32,667][1934158] Num frames 5000...
552
+ [2024-05-27 23:19:32,732][1934158] Num frames 5100...
553
+ [2024-05-27 23:19:32,794][1934158] Num frames 5200...
554
+ [2024-05-27 23:19:32,852][1934158] Num frames 5300...
555
+ [2024-05-27 23:19:32,906][1934158] Avg episode rewards: #0: 24.204, true rewards: #0: 10.604
556
+ [2024-05-27 23:19:32,906][1934158] Avg episode reward: 24.204, avg true_objective: 10.604
557
+ [2024-05-27 23:19:32,970][1934158] Num frames 5400...
558
+ [2024-05-27 23:19:33,037][1934158] Num frames 5500...
559
+ [2024-05-27 23:19:33,102][1934158] Num frames 5600...
560
+ [2024-05-27 23:19:33,165][1934158] Num frames 5700...
561
+ [2024-05-27 23:19:33,222][1934158] Num frames 5800...
562
+ [2024-05-27 23:19:33,310][1934158] Avg episode rewards: #0: 21.607, true rewards: #0: 9.773
563
+ [2024-05-27 23:19:33,310][1934158] Avg episode reward: 21.607, avg true_objective: 9.773
564
+ [2024-05-27 23:19:33,333][1934158] Num frames 5900...
565
+ [2024-05-27 23:19:33,482][1934158] Num frames 6000...
566
+ [2024-05-27 23:19:33,548][1934158] Num frames 6100...
567
+ [2024-05-27 23:19:33,609][1934158] Num frames 6200...
568
+ [2024-05-27 23:19:33,671][1934158] Num frames 6300...
569
+ [2024-05-27 23:19:33,734][1934158] Num frames 6400...
570
+ [2024-05-27 23:19:33,794][1934158] Num frames 6500...
571
+ [2024-05-27 23:19:33,856][1934158] Num frames 6600...
572
+ [2024-05-27 23:19:33,921][1934158] Num frames 6700...
573
+ [2024-05-27 23:19:33,978][1934158] Num frames 6800...
574
+ [2024-05-27 23:19:34,035][1934158] Num frames 6900...
575
+ [2024-05-27 23:19:34,144][1934158] Avg episode rewards: #0: 21.702, true rewards: #0: 9.987
576
+ [2024-05-27 23:19:34,144][1934158] Avg episode reward: 21.702, avg true_objective: 9.987
577
+ [2024-05-27 23:19:34,151][1934158] Num frames 7000...
578
+ [2024-05-27 23:19:34,217][1934158] Num frames 7100...
579
+ [2024-05-27 23:19:34,281][1934158] Num frames 7200...
580
+ [2024-05-27 23:19:34,341][1934158] Num frames 7300...
581
+ [2024-05-27 23:19:34,451][1934158] Num frames 7400...
582
+ [2024-05-27 23:19:34,510][1934158] Num frames 7500...
583
+ [2024-05-27 23:19:34,570][1934158] Num frames 7600...
584
+ [2024-05-27 23:19:34,634][1934158] Num frames 7700...
585
+ [2024-05-27 23:19:34,694][1934158] Num frames 7800...
586
+ [2024-05-27 23:19:34,781][1934158] Num frames 7900...
587
+ [2024-05-27 23:19:34,851][1934158] Num frames 8000...
588
+ [2024-05-27 23:19:34,933][1934158] Num frames 8100...
589
+ [2024-05-27 23:19:35,030][1934158] Num frames 8200...
590
+ [2024-05-27 23:19:35,099][1934158] Num frames 8300...
591
+ [2024-05-27 23:19:35,251][1934158] Num frames 8400...
592
+ [2024-05-27 23:19:35,382][1934158] Num frames 8500...
593
+ [2024-05-27 23:19:35,466][1934158] Num frames 8600...
594
+ [2024-05-27 23:19:35,533][1934158] Num frames 8700...
595
+ [2024-05-27 23:19:35,603][1934158] Num frames 8800...
596
+ [2024-05-27 23:19:35,672][1934158] Num frames 8900...
597
+ [2024-05-27 23:19:35,772][1934158] Num frames 9000...
598
+ [2024-05-27 23:19:35,903][1934158] Avg episode rewards: #0: 25.989, true rewards: #0: 11.364
599
+ [2024-05-27 23:19:35,903][1934158] Avg episode reward: 25.989, avg true_objective: 11.364
600
+ [2024-05-27 23:19:35,910][1934158] Num frames 9100...
601
+ [2024-05-27 23:19:35,989][1934158] Num frames 9200...
602
+ [2024-05-27 23:19:36,090][1934158] Num frames 9300...
603
+ [2024-05-27 23:19:36,194][1934158] Num frames 9400...
604
+ [2024-05-27 23:19:36,262][1934158] Num frames 9500...
605
+ [2024-05-27 23:19:36,364][1934158] Num frames 9600...
606
+ [2024-05-27 23:19:36,441][1934158] Avg episode rewards: #0: 24.039, true rewards: #0: 10.706
607
+ [2024-05-27 23:19:36,441][1934158] Avg episode reward: 24.039, avg true_objective: 10.706
608
+ [2024-05-27 23:19:36,491][1934158] Num frames 9700...
609
+ [2024-05-27 23:19:36,600][1934158] Num frames 9800...
610
+ [2024-05-27 23:19:36,669][1934158] Num frames 9900...
611
+ [2024-05-27 23:19:36,743][1934158] Num frames 10000...
612
+ [2024-05-27 23:19:36,810][1934158] Num frames 10100...
613
+ [2024-05-27 23:19:36,895][1934158] Avg episode rewards: #0: 22.550, true rewards: #0: 10.150
614
+ [2024-05-27 23:19:36,895][1934158] Avg episode reward: 22.550, avg true_objective: 10.150
615
+ [2024-05-27 23:19:49,448][1934158] Replay video saved to /media/fast/code/learning/train_dir/default_experiment/replay.mp4!
616
+ [2024-05-27 23:19:49,685][1934158] Loading existing experiment configuration from /media/fast/code/learning/train_dir/default_experiment/config.json
617
+ [2024-05-27 23:19:49,685][1934158] Overriding arg 'num_workers' with value 1 passed from command line
618
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'no_render'=True that is not in the saved config file!
619
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'save_video'=True that is not in the saved config file!
620
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
621
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'video_name'=None that is not in the saved config file!
622
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
623
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
624
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'push_to_hub'=True that is not in the saved config file!
625
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'hf_repository'='DavidPL1/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
626
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'policy_index'=0 that is not in the saved config file!
627
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
628
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'train_script'=None that is not in the saved config file!
629
+ [2024-05-27 23:19:49,685][1934158] Adding new argument 'enjoy_script'=None that is not in the saved config file!
630
+ [2024-05-27 23:19:49,685][1934158] Using frameskip 1 and render_action_repeat=4 for evaluation
631
+ [2024-05-27 23:19:49,688][1934158] RunningMeanStd input shape: (3, 72, 128)
632
+ [2024-05-27 23:19:49,689][1934158] RunningMeanStd input shape: (1,)
633
+ [2024-05-27 23:19:49,694][1934158] ConvEncoder: input_channels=3
634
+ [2024-05-27 23:19:49,712][1934158] Conv encoder output size: 512
635
+ [2024-05-27 23:19:49,712][1934158] Policy head output size: 512
636
+ [2024-05-27 23:19:49,721][1934158] Loading state from checkpoint /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
637
+ [2024-05-27 23:19:50,123][1934158] Num frames 100...
638
+ [2024-05-27 23:19:50,179][1934158] Num frames 200...
639
+ [2024-05-27 23:19:50,237][1934158] Num frames 300...
640
+ [2024-05-27 23:19:50,298][1934158] Num frames 400...
641
+ [2024-05-27 23:19:50,364][1934158] Num frames 500...
642
+ [2024-05-27 23:19:50,424][1934158] Num frames 600...
643
+ [2024-05-27 23:19:50,483][1934158] Num frames 700...
644
+ [2024-05-27 23:19:50,544][1934158] Num frames 800...
645
+ [2024-05-27 23:19:50,615][1934158] Avg episode rewards: #0: 15.320, true rewards: #0: 8.320
646
+ [2024-05-27 23:19:50,616][1934158] Avg episode reward: 15.320, avg true_objective: 8.320
647
+ [2024-05-27 23:19:50,657][1934158] Num frames 900...
648
+ [2024-05-27 23:19:50,717][1934158] Num frames 1000...
649
+ [2024-05-27 23:19:50,777][1934158] Num frames 1100...
650
+ [2024-05-27 23:19:50,834][1934158] Num frames 1200...
651
+ [2024-05-27 23:19:50,898][1934158] Num frames 1300...
652
+ [2024-05-27 23:19:51,089][1934158] Num frames 1400...
653
+ [2024-05-27 23:19:51,192][1934158] Num frames 1500...
654
+ [2024-05-27 23:19:51,258][1934158] Num frames 1600...
655
+ [2024-05-27 23:19:51,324][1934158] Num frames 1700...
656
+ [2024-05-27 23:19:51,544][1934158] Num frames 1800...
657
+ [2024-05-27 23:19:51,627][1934158] Num frames 1900...
658
+ [2024-05-27 23:19:51,718][1934158] Num frames 2000...
659
+ [2024-05-27 23:19:51,785][1934158] Num frames 2100...
660
+ [2024-05-27 23:19:51,866][1934158] Avg episode rewards: #0: 23.700, true rewards: #0: 10.700
661
+ [2024-05-27 23:19:51,866][1934158] Avg episode reward: 23.700, avg true_objective: 10.700
662
+ [2024-05-27 23:19:51,915][1934158] Num frames 2200...
663
+ [2024-05-27 23:19:51,983][1934158] Num frames 2300...
664
+ [2024-05-27 23:19:52,098][1934158] Num frames 2400...
665
+ [2024-05-27 23:19:52,189][1934158] Num frames 2500...
666
+ [2024-05-27 23:19:52,259][1934158] Num frames 2600...
667
+ [2024-05-27 23:19:52,432][1934158] Num frames 2700...
668
+ [2024-05-27 23:19:52,507][1934158] Num frames 2800...
669
+ [2024-05-27 23:19:52,571][1934158] Num frames 2900...
670
+ [2024-05-27 23:19:52,754][1934158] Num frames 3000...
671
+ [2024-05-27 23:19:52,874][1934158] Num frames 3100...
672
+ [2024-05-27 23:19:52,940][1934158] Num frames 3200...
673
+ [2024-05-27 23:19:53,007][1934158] Num frames 3300...
674
+ [2024-05-27 23:19:53,074][1934158] Num frames 3400...
675
+ [2024-05-27 23:19:53,180][1934158] Avg episode rewards: #0: 26.280, true rewards: #0: 11.613
676
+ [2024-05-27 23:19:53,180][1934158] Avg episode reward: 26.280, avg true_objective: 11.613
677
+ [2024-05-27 23:19:53,191][1934158] Num frames 3500...
678
+ [2024-05-27 23:19:53,254][1934158] Num frames 3600...
679
+ [2024-05-27 23:19:53,331][1934158] Num frames 3700...
680
+ [2024-05-27 23:19:53,423][1934158] Num frames 3800...
681
+ [2024-05-27 23:19:53,511][1934158] Num frames 3900...
682
+ [2024-05-27 23:19:53,578][1934158] Num frames 4000...
683
+ [2024-05-27 23:19:53,649][1934158] Num frames 4100...
684
+ [2024-05-27 23:19:53,715][1934158] Num frames 4200...
685
+ [2024-05-27 23:19:53,811][1934158] Num frames 4300...
686
+ [2024-05-27 23:19:53,883][1934158] Num frames 4400...
687
+ [2024-05-27 23:19:53,953][1934158] Num frames 4500...
688
+ [2024-05-27 23:19:54,033][1934158] Num frames 4600...
689
+ [2024-05-27 23:19:54,114][1934158] Num frames 4700...
690
+ [2024-05-27 23:19:54,212][1934158] Avg episode rewards: #0: 26.830, true rewards: #0: 11.830
691
+ [2024-05-27 23:19:54,213][1934158] Avg episode reward: 26.830, avg true_objective: 11.830
692
+ [2024-05-27 23:19:54,258][1934158] Num frames 4800...
693
+ [2024-05-27 23:19:54,415][1934158] Num frames 4900...
694
+ [2024-05-27 23:19:54,590][1934158] Num frames 5000...
695
+ [2024-05-27 23:19:54,654][1934158] Num frames 5100...
696
+ [2024-05-27 23:19:54,722][1934158] Num frames 5200...
697
+ [2024-05-27 23:19:54,785][1934158] Num frames 5300...
698
+ [2024-05-27 23:19:54,876][1934158] Num frames 5400...
699
+ [2024-05-27 23:19:55,026][1934158] Num frames 5500...
700
+ [2024-05-27 23:19:55,145][1934158] Num frames 5600...
701
+ [2024-05-27 23:19:55,269][1934158] Num frames 5700...
702
+ [2024-05-27 23:19:55,339][1934158] Num frames 5800...
703
+ [2024-05-27 23:19:55,535][1934158] Num frames 5900...
704
+ [2024-05-27 23:19:55,627][1934158] Num frames 6000...
705
+ [2024-05-27 23:19:55,699][1934158] Num frames 6100...
706
+ [2024-05-27 23:19:55,766][1934158] Num frames 6200...
707
+ [2024-05-27 23:19:55,834][1934158] Num frames 6300...
708
+ [2024-05-27 23:19:55,900][1934158] Num frames 6400...
709
+ [2024-05-27 23:19:56,032][1934158] Num frames 6500...
710
+ [2024-05-27 23:19:56,229][1934158] Num frames 6600...
711
+ [2024-05-27 23:19:56,296][1934158] Num frames 6700...
712
+ [2024-05-27 23:19:56,406][1934158] Num frames 6800...
713
+ [2024-05-27 23:19:56,480][1934158] Avg episode rewards: #0: 33.064, true rewards: #0: 13.664
714
+ [2024-05-27 23:19:56,481][1934158] Avg episode reward: 33.064, avg true_objective: 13.664
715
+ [2024-05-27 23:19:56,526][1934158] Num frames 6900...
716
+ [2024-05-27 23:19:56,763][1934158] Num frames 7000...
717
+ [2024-05-27 23:19:56,865][1934158] Num frames 7100...
718
+ [2024-05-27 23:19:56,932][1934158] Num frames 7200...
719
+ [2024-05-27 23:19:57,014][1934158] Num frames 7300...
720
+ [2024-05-27 23:19:57,145][1934158] Avg episode rewards: #0: 29.163, true rewards: #0: 12.330
721
+ [2024-05-27 23:19:57,145][1934158] Avg episode reward: 29.163, avg true_objective: 12.330
722
+ [2024-05-27 23:19:57,147][1934158] Num frames 7400...
723
+ [2024-05-27 23:19:57,215][1934158] Num frames 7500...
724
+ [2024-05-27 23:19:57,399][1934158] Num frames 7600...
725
+ [2024-05-27 23:19:57,518][1934158] Num frames 7700...
726
+ [2024-05-27 23:19:57,586][1934158] Num frames 7800...
727
+ [2024-05-27 23:19:57,695][1934158] Num frames 7900...
728
+ [2024-05-27 23:19:57,823][1934158] Num frames 8000...
729
+ [2024-05-27 23:19:57,964][1934158] Num frames 8100...
730
+ [2024-05-27 23:19:58,032][1934158] Num frames 8200...
731
+ [2024-05-27 23:19:58,101][1934158] Num frames 8300...
732
+ [2024-05-27 23:19:58,168][1934158] Num frames 8400...
733
+ [2024-05-27 23:19:58,262][1934158] Num frames 8500...
734
+ [2024-05-27 23:19:58,340][1934158] Num frames 8600...
735
+ [2024-05-27 23:19:58,411][1934158] Num frames 8700...
736
+ [2024-05-27 23:19:58,523][1934158] Num frames 8800...
737
+ [2024-05-27 23:19:58,660][1934158] Num frames 8900...
738
+ [2024-05-27 23:19:58,727][1934158] Num frames 9000...
739
+ [2024-05-27 23:19:58,802][1934158] Num frames 9100...
740
+ [2024-05-27 23:19:59,012][1934158] Num frames 9200...
741
+ [2024-05-27 23:19:59,116][1934158] Num frames 9300...
742
+ [2024-05-27 23:19:59,185][1934158] Num frames 9400...
743
+ [2024-05-27 23:19:59,306][1934158] Avg episode rewards: #0: 33.711, true rewards: #0: 13.569
744
+ [2024-05-27 23:19:59,306][1934158] Avg episode reward: 33.711, avg true_objective: 13.569
745
+ [2024-05-27 23:19:59,307][1934158] Num frames 9500...
746
+ [2024-05-27 23:19:59,421][1934158] Num frames 9600...
747
+ [2024-05-27 23:19:59,512][1934158] Num frames 9700...
748
+ [2024-05-27 23:19:59,576][1934158] Num frames 9800...
749
+ [2024-05-27 23:19:59,647][1934158] Num frames 9900...
750
+ [2024-05-27 23:19:59,729][1934158] Avg episode rewards: #0: 30.182, true rewards: #0: 12.433
751
+ [2024-05-27 23:19:59,729][1934158] Avg episode reward: 30.182, avg true_objective: 12.433
752
+ [2024-05-27 23:19:59,775][1934158] Num frames 10000...
753
+ [2024-05-27 23:19:59,844][1934158] Num frames 10100...
754
+ [2024-05-27 23:19:59,909][1934158] Num frames 10200...
755
+ [2024-05-27 23:20:00,028][1934158] Num frames 10300...
756
+ [2024-05-27 23:20:00,151][1934158] Num frames 10400...
757
+ [2024-05-27 23:20:00,252][1934158] Num frames 10500...
758
+ [2024-05-27 23:20:00,320][1934158] Num frames 10600...
759
+ [2024-05-27 23:20:00,496][1934158] Num frames 10700...
760
+ [2024-05-27 23:20:00,583][1934158] Num frames 10800...
761
+ [2024-05-27 23:20:00,669][1934158] Num frames 10900...
762
+ [2024-05-27 23:20:00,763][1934158] Num frames 11000...
763
+ [2024-05-27 23:20:00,883][1934158] Num frames 11100...
764
+ [2024-05-27 23:20:00,972][1934158] Num frames 11200...
765
+ [2024-05-27 23:20:01,045][1934158] Num frames 11300...
766
+ [2024-05-27 23:20:01,140][1934158] Num frames 11400...
767
+ [2024-05-27 23:20:01,322][1934158] Num frames 11500...
768
+ [2024-05-27 23:20:01,404][1934158] Avg episode rewards: #0: 31.269, true rewards: #0: 12.824
769
+ [2024-05-27 23:20:01,404][1934158] Avg episode reward: 31.269, avg true_objective: 12.824
770
+ [2024-05-27 23:20:01,495][1934158] Num frames 11600...
771
+ [2024-05-27 23:20:01,560][1934158] Num frames 11700...
772
+ [2024-05-27 23:20:01,631][1934158] Num frames 11800...
773
+ [2024-05-27 23:20:01,747][1934158] Num frames 11900...
774
+ [2024-05-27 23:20:01,829][1934158] Num frames 12000...
775
+ [2024-05-27 23:20:01,911][1934158] Num frames 12100...
776
+ [2024-05-27 23:20:02,025][1934158] Num frames 12200...
777
+ [2024-05-27 23:20:02,094][1934158] Num frames 12300...
778
+ [2024-05-27 23:20:02,161][1934158] Num frames 12400...
779
+ [2024-05-27 23:20:02,230][1934158] Num frames 12500...
780
+ [2024-05-27 23:20:02,301][1934158] Num frames 12600...
781
+ [2024-05-27 23:20:02,394][1934158] Avg episode rewards: #0: 30.430, true rewards: #0: 12.630
782
+ [2024-05-27 23:20:02,394][1934158] Avg episode reward: 30.430, avg true_objective: 12.630
783
+ [2024-05-27 23:20:17,697][1934158] Replay video saved to /media/fast/code/learning/train_dir/default_experiment/replay.mp4!