File size: 1,314 Bytes
22c5304
f96bfcd
 
 
 
 
 
 
22c5304
 
f96bfcd
 
22c5304
f96bfcd
22c5304
f96bfcd
 
 
 
 
 
 
 
 
 
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
22c5304
f96bfcd
 
 
 
 
 
 
 
 
 
22c5304
f96bfcd
22c5304
f96bfcd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
model-index:
- name: output
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 6.1342
- eval_wer: 1.0
- eval_cer: 1.0
- eval_runtime: 1427.1544
- eval_samples_per_second: 1.541
- eval_steps_per_second: 0.013
- epoch: 2.0
- step: 818

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 124
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1