DeathKnight commited on
Commit
e7ceb1b
·
1 Parent(s): d6ba428

Commit PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -179.31 +/- 65.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b7929c790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b7929c820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b7929c8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b7929c940>", "_build": "<function ActorCriticPolicy._build at 0x7f0b7929c9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b7929ca60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b7929caf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b7929cb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b7929cc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b7929cca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b7929cd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b79295a50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673116593804954235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOAmYz6aUao/q6xPPw6Nb75vI7W+M+h5vgAAAAAAAAAAAun1vguoDb6j2f+9tcqQvMfbEL7mji++AACAPwAAgD9yzbW+Ue9wPyVhdL+LjEy/8QrjPuo+Oj4AAAAAAAAAAJNyEb5hbcM/WEdVv+ATLj6+9ms+SXiNPgAAAAAAAAAAXQtuvtkktD+JUi6/AEc+vhHXXT6wB1Q+AAAAAAAAAABmnJk8daq0P1bIIT/ygI+34tWwvB/WEr4AAAAAAAAAACaUCL4frpw/46CXvvZkKL+Kt0k+MgdjPgAAAAAAAAAAw5XIPuLWjD/+TDo/vGpav8PynL76Azy+AAAAAAAAAAAmnFo+D3+vP/5JQT9ng2S+XLE4vpXn+70AAAAAAAAAABBRoT5EpZA/vtYfPyEDPb9jX8K+L4ObvgAAAAAAAAAA7Y38PiB4CD+wRXs/s2Cfv31da79LkDC+AAAAAAAAAAAAUcw87uCtP7oauD7MUNO+tQQavQYryb0AAAAAAAAAAO2sML7+T5Q+Ffqsvh/Oor+9roc+nZZhPQAAAAAAAAAAZoUqPxDi1j5Lgn0/PC2Wv8VG0L6GkDo+AAAAAAAAAAAAUOW6MqqzPzKRC70937a96Hr7uy8xNL0AAAAAAAAAAPNTM74Q32I/Re3kPDRyhb/irQi/3KkEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo5I6AU0Ib8CUhpRSlIwBbJRLbIwBdJRHQGGbzTWoWHl1fZQoaAZoCWgPQwhGJ0utN2B9wJSGlFKUaBVLVmgWR0Bhm84xUNrkdX2UKGgGaAloD0MILSEf9GxEYsCUhpRSlGgVS0doFkdAYZvQTmGM43V9lChoBmgJaA9DCLIPsiyY1FfAlIaUUpRoFUs+aBZHQGGd5LAYYSB1fZQoaAZoCWgPQwhycOmYs051wJSGlFKUaBVLZ2gWR0Bhnq925hBrdX2UKGgGaAloD0MIpYeh1UnJYcCUhpRSlGgVS3NoFkdAYaFgm7aqTHV9lChoBmgJaA9DCLgiMUGNnGPAlIaUUpRoFUt1aBZHQGGif7Jnxrl1fZQoaAZoCWgPQwi+3ZIcsEVCwJSGlFKUaBVLaGgWR0BhotRgqmTDdX2UKGgGaAloD0MIiulCrP6tasCUhpRSlGgVS1loFkdAYaMzVtoBaXV9lChoBmgJaA9DCEHXvoBeyF3AlIaUUpRoFUtFaBZHQGGjqnvUjLV1fZQoaAZoCWgPQwhcjexKS155wJSGlFKUaBVLXGgWR0Bho9jy4FzNdX2UKGgGaAloD0MIJVmHo6tOZcCUhpRSlGgVS29oFkdAYaVcPe54GHV9lChoBmgJaA9DCFbxRuaRhVbAlIaUUpRoFUtAaBZHQGGlg/9pAUt1fZQoaAZoCWgPQwhh4/p3Pcx0wJSGlFKUaBVLWWgWR0BhpcgEEC/5dX2UKGgGaAloD0MIwELmyiDEesCUhpRSlGgVS3VoFkdAYaaySFGoaXV9lChoBmgJaA9DCIunHmnwnWjAlIaUUpRoFUteaBZHQGGmqHoHLRt1fZQoaAZoCWgPQwiGIAclTH5twJSGlFKUaBVLX2gWR0Bhpn4/NZ/1dX2UKGgGaAloD0MIGjbK+s0gXsCUhpRSlGgVS55oFkdAYaaWVNYbKnV9lChoBmgJaA9DCDogCfu2SnTAlIaUUpRoFUt3aBZHQGGnSs0YTCd1fZQoaAZoCWgPQwhtrS8SWnlgwJSGlFKUaBVLc2gWR0BhqNK02LpBdX2UKGgGaAloD0MIkgN2NfldeMCUhpRSlGgVS1poFkdAYakWeHzpYHV9lChoBmgJaA9DCATnjCjt/0vAlIaUUpRoFUtMaBZHQGGqDrqt5lh1fZQoaAZoCWgPQwj5S4v6JFtmwJSGlFKUaBVLSWgWR0Bhqq+N96TodX2UKGgGaAloD0MIJQUWwJRDVcCUhpRSlGgVSz9oFkdAYawulGgBcXV9lChoBmgJaA9DCHOFd7mILlnAlIaUUpRoFUtgaBZHQGGtcEmplz51fZQoaAZoCWgPQwihvI+judZkwJSGlFKUaBVLQWgWR0BhrWdqcmShdX2UKGgGaAloD0MITFXa4hoFdsCUhpRSlGgVS19oFkdAYa277Kq4pnV9lChoBmgJaA9DCMEb0qjA613AlIaUUpRoFUtJaBZHQGGugwfyPMl1fZQoaAZoCWgPQwhv8lt0suVbwJSGlFKUaBVLU2gWR0BhrrMFEAo5dX2UKGgGaAloD0MIOpZ31QM7c8CUhpRSlGgVS2ZoFkdAYa7xSYPXkHV9lChoBmgJaA9DCInRcwtdEF3AlIaUUpRoFUtFaBZHQGGuv/BFd9l1fZQoaAZoCWgPQwip3EQtzUVHwJSGlFKUaBVLSGgWR0BhsPsRg7YDdX2UKGgGaAloD0MIwcjLmli4WcCUhpRSlGgVS2toFkdAYbFXXAdn03V9lChoBmgJaA9DCI4CRMHMKHDAlIaUUpRoFUt8aBZHQGGx6MBIWgx1fZQoaAZoCWgPQwhcdLLUehdlwJSGlFKUaBVLbmgWR0Bhsu38XN1RdX2UKGgGaAloD0MI1XjpJnFKd8CUhpRSlGgVS3JoFkdAYbOAHVwxWXV9lChoBmgJaA9DCPLuyFjtsXLAlIaUUpRoFUtoaBZHQGG2SCOFQEZ1fZQoaAZoCWgPQwij5xa6EsdfwJSGlFKUaBVLY2gWR0Bhtm+wkgOjdX2UKGgGaAloD0MI/gxv1uDVT8CUhpRSlGgVS0poFkdAYbZqptJnQXV9lChoBmgJaA9DCHeHFAMk5lzAlIaUUpRoFUt6aBZHQGG3SfthNM51fZQoaAZoCWgPQwjo9pLGqAd4wJSGlFKUaBVLWGgWR0BhuRSFXaJzdX2UKGgGaAloD0MIS5ARUKGMfcCUhpRSlGgVS21oFkdAYbkqNp/PPnV9lChoBmgJaA9DCFQ3F39bDmHAlIaUUpRoFUtnaBZHQGG5x5kbxVh1fZQoaAZoCWgPQwhzLVqAtqRYwJSGlFKUaBVLZGgWR0BhuazcAR02dX2UKGgGaAloD0MIvvp46LsXPsCUhpRSlGgVS1NoFkdAYbq0qpcX33V9lChoBmgJaA9DCN9vtOMGNHnAlIaUUpRoFUtkaBZHQGG6oa1kUbl1fZQoaAZoCWgPQwiXb31Yb2NdwJSGlFKUaBVLQWgWR0BhuxDzAeq8dX2UKGgGaAloD0MIMNXMWgrICECUhpRSlGgVS3FoFkdAYbxDTjNpunV9lChoBmgJaA9DCPpeQ3CciHHAlIaUUpRoFUt1aBZHQGG8jk+5e7d1fZQoaAZoCWgPQwjidJKtLlpawJSGlFKUaBVLO2gWR0BhvPE/B3zMdX2UKGgGaAloD0MI+MQ6VX4pccCUhpRSlGgVS2doFkdAYb1kLhJiAnV9lChoBmgJaA9DCPBsj94wInfAlIaUUpRoFUtmaBZHQGG91N5+pfh1fZQoaAZoCWgPQwgEr5Y7M+xswJSGlFKUaBVLQGgWR0BhwLHEMspYdX2UKGgGaAloD0MI0Jz1KUc5ccCUhpRSlGgVS3toFkdAYcDxGUfPonV9lChoBmgJaA9DCCygUE8fYVPAlIaUUpRoFUtFaBZHQGHBbEYO2Ap1fZQoaAZoCWgPQwhMqrab4ApdwJSGlFKUaBVLZmgWR0Bhwca2nbZfdX2UKGgGaAloD0MIaqM6HUgDcMCUhpRSlGgVS3RoFkdAYcNg1FYuCnV9lChoBmgJaA9DCGwGuCBbrlrAlIaUUpRoFUteaBZHQGHDocR15jZ1fZQoaAZoCWgPQwiw6NZreupbwJSGlFKUaBVLV2gWR0BhxG6Ae7tidX2UKGgGaAloD0MIx9l0BHCbVsCUhpRSlGgVS0BoFkdAYcRwXIlt0nV9lChoBmgJaA9DCEsfuqA+8GnAlIaUUpRoFUtfaBZHQGHFvVmSQo11fZQoaAZoCWgPQwj034PXLg5kwJSGlFKUaBVLT2gWR0BhxdehPCVKdX2UKGgGaAloD0MIUP2DSIY8L8CUhpRSlGgVS09oFkdAYca76pHZsnV9lChoBmgJaA9DCLSqJR3lRFzAlIaUUpRoFUuMaBZHQGHHKT8pCrt1fZQoaAZoCWgPQwhIqYQn9HR2wJSGlFKUaBVLf2gWR0Bhx5AbADaHdX2UKGgGaAloD0MI6bevA+dNWsCUhpRSlGgVS3RoFkdAYcfozvZyuXV9lChoBmgJaA9DCApq+BbWwlnAlIaUUpRoFUtIaBZHQGHJVG9YfXB1fZQoaAZoCWgPQwhgWtQnuYtYwJSGlFKUaBVLd2gWR0BhyedXko4NdX2UKGgGaAloD0MIOGivPh6IQMCUhpRSlGgVS3NoFkdAYcm5cTrVv3V9lChoBmgJaA9DCDcWFAZlyWDAlIaUUpRoFUtZaBZHQGHLnLq2SdR1fZQoaAZoCWgPQwgWwf9WsiZYwJSGlFKUaBVLSWgWR0Bhy8s6JZW8dX2UKGgGaAloD0MIEarU7AGuasCUhpRSlGgVS2JoFkdAYcv4iX6ZY3V9lChoBmgJaA9DCN6Th4XagGDAlIaUUpRoFUtWaBZHQGHNjRc/t6Z1fZQoaAZoCWgPQwjbEyS2u8xhwJSGlFKUaBVLRWgWR0BhzcIC2c8UdX2UKGgGaAloD0MIoFOQn43yR8CUhpRSlGgVS1ZoFkdAYc5Y3eenRHV9lChoBmgJaA9DCOj4aHHGKEXAlIaUUpRoFUtZaBZHQGHOrb5/LDB1fZQoaAZoCWgPQwj8prBSQQVQwJSGlFKUaBVLPmgWR0BhztkMCtA+dX2UKGgGaAloD0MIpkI8Eq/HZMCUhpRSlGgVS3JoFkdAYc7h99c8knV9lChoBmgJaA9DCKW9wRcmO3LAlIaUUpRoFUtYaBZHQGHRKlxffGd1fZQoaAZoCWgPQwiNDd3sDwdQwJSGlFKUaBVLYWgWR0Bh0nuPV/c4dX2UKGgGaAloD0MI88e0No3OYcCUhpRSlGgVS3FoFkdAYdKoUi6g/XV9lChoBmgJaA9DCI1iuaVVwmDAlIaUUpRoFUtwaBZHQGHTYLCvX9R1fZQoaAZoCWgPQwjcm98w0VhjwJSGlFKUaBVLV2gWR0Bh065qdpZfdX2UKGgGaAloD0MIPWGJBxR4bcCUhpRSlGgVS1xoFkdAYdQipvP1MHV9lChoBmgJaA9DCKmG/Z5YjFTAlIaUUpRoFUs9aBZHQGHUh+fAbhp1fZQoaAZoCWgPQwgzMzMz87N+wJSGlFKUaBVLZGgWR0Bh1Ks6q815dX2UKGgGaAloD0MIaD9SRIaJVcCUhpRSlGgVSz9oFkdAYdXt52QnyHV9lChoBmgJaA9DCKtZZ3zfkWjAlIaUUpRoFUtgaBZHQGHWz3AVO9F1fZQoaAZoCWgPQwiD9urjIcNrwJSGlFKUaBVLTWgWR0Bh11GoaUA1dX2UKGgGaAloD0MIYmngR3VCcMCUhpRSlGgVS2toFkdAYdfpAUtZm3V9lChoBmgJaA9DCG/x8J4DyWrAlIaUUpRoFUtSaBZHQGHYEkB0ZFZ1fZQoaAZoCWgPQwi8P96r1showJSGlFKUaBVLYWgWR0Bh2K7CiyprdX2UKGgGaAloD0MI8gpET8qya8CUhpRSlGgVS1JoFkdAYdo8Md92HXV9lChoBmgJaA9DCFu0AG2rGlzAlIaUUpRoFUtIaBZHQGHaqUmlZYB1fZQoaAZoCWgPQwgvbM1W3tR1wJSGlFKUaBVLUWgWR0Bh23wEyLyddX2UKGgGaAloD0MINlfNc0SOdcCUhpRSlGgVS0xoFkdAYdvS5RTCL3V9lChoBmgJaA9DCJqTF5mAblzAlIaUUpRoFUtVaBZHQGHdJQ1rIo51fZQoaAZoCWgPQwhEaW/whZ1nwJSGlFKUaBVLWGgWR0Bh3nC2tuDSdX2UKGgGaAloD0MINsmP+JXNcsCUhpRSlGgVS11oFkdAYd6eUY8+zXV9lChoBmgJaA9DCF/waU6e2HTAlIaUUpRoFUuTaBZHQGHfDMFEAo51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2_Toan.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c1bfddfdac4acef9f0a406eaa04501738694f2bed772393f6ce09db9a44b4ee
3
+ size 147065
ppo-LunarLander-v2_Toan/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2_Toan/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b7929c790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b7929c820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b7929c8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b7929c940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0b7929c9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0b7929ca60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b7929caf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0b7929cb80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b7929cc10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b7929cca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b7929cd30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0b79295a50>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 1000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673116593804954235,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOAmYz6aUao/q6xPPw6Nb75vI7W+M+h5vgAAAAAAAAAAAun1vguoDb6j2f+9tcqQvMfbEL7mji++AACAPwAAgD9yzbW+Ue9wPyVhdL+LjEy/8QrjPuo+Oj4AAAAAAAAAAJNyEb5hbcM/WEdVv+ATLj6+9ms+SXiNPgAAAAAAAAAAXQtuvtkktD+JUi6/AEc+vhHXXT6wB1Q+AAAAAAAAAABmnJk8daq0P1bIIT/ygI+34tWwvB/WEr4AAAAAAAAAACaUCL4frpw/46CXvvZkKL+Kt0k+MgdjPgAAAAAAAAAAw5XIPuLWjD/+TDo/vGpav8PynL76Azy+AAAAAAAAAAAmnFo+D3+vP/5JQT9ng2S+XLE4vpXn+70AAAAAAAAAABBRoT5EpZA/vtYfPyEDPb9jX8K+L4ObvgAAAAAAAAAA7Y38PiB4CD+wRXs/s2Cfv31da79LkDC+AAAAAAAAAAAAUcw87uCtP7oauD7MUNO+tQQavQYryb0AAAAAAAAAAO2sML7+T5Q+Ffqsvh/Oor+9roc+nZZhPQAAAAAAAAAAZoUqPxDi1j5Lgn0/PC2Wv8VG0L6GkDo+AAAAAAAAAAAAUOW6MqqzPzKRC70937a96Hr7uy8xNL0AAAAAAAAAAPNTM74Q32I/Re3kPDRyhb/irQi/3KkEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -15.384,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo5I6AU0Ib8CUhpRSlIwBbJRLbIwBdJRHQGGbzTWoWHl1fZQoaAZoCWgPQwhGJ0utN2B9wJSGlFKUaBVLVmgWR0Bhm84xUNrkdX2UKGgGaAloD0MILSEf9GxEYsCUhpRSlGgVS0doFkdAYZvQTmGM43V9lChoBmgJaA9DCLIPsiyY1FfAlIaUUpRoFUs+aBZHQGGd5LAYYSB1fZQoaAZoCWgPQwhycOmYs051wJSGlFKUaBVLZ2gWR0Bhnq925hBrdX2UKGgGaAloD0MIpYeh1UnJYcCUhpRSlGgVS3NoFkdAYaFgm7aqTHV9lChoBmgJaA9DCLgiMUGNnGPAlIaUUpRoFUt1aBZHQGGif7Jnxrl1fZQoaAZoCWgPQwi+3ZIcsEVCwJSGlFKUaBVLaGgWR0BhotRgqmTDdX2UKGgGaAloD0MIiulCrP6tasCUhpRSlGgVS1loFkdAYaMzVtoBaXV9lChoBmgJaA9DCEHXvoBeyF3AlIaUUpRoFUtFaBZHQGGjqnvUjLV1fZQoaAZoCWgPQwhcjexKS155wJSGlFKUaBVLXGgWR0Bho9jy4FzNdX2UKGgGaAloD0MIJVmHo6tOZcCUhpRSlGgVS29oFkdAYaVcPe54GHV9lChoBmgJaA9DCFbxRuaRhVbAlIaUUpRoFUtAaBZHQGGlg/9pAUt1fZQoaAZoCWgPQwhh4/p3Pcx0wJSGlFKUaBVLWWgWR0BhpcgEEC/5dX2UKGgGaAloD0MIwELmyiDEesCUhpRSlGgVS3VoFkdAYaaySFGoaXV9lChoBmgJaA9DCIunHmnwnWjAlIaUUpRoFUteaBZHQGGmqHoHLRt1fZQoaAZoCWgPQwiGIAclTH5twJSGlFKUaBVLX2gWR0Bhpn4/NZ/1dX2UKGgGaAloD0MIGjbK+s0gXsCUhpRSlGgVS55oFkdAYaaWVNYbKnV9lChoBmgJaA9DCDogCfu2SnTAlIaUUpRoFUt3aBZHQGGnSs0YTCd1fZQoaAZoCWgPQwhtrS8SWnlgwJSGlFKUaBVLc2gWR0BhqNK02LpBdX2UKGgGaAloD0MIkgN2NfldeMCUhpRSlGgVS1poFkdAYakWeHzpYHV9lChoBmgJaA9DCATnjCjt/0vAlIaUUpRoFUtMaBZHQGGqDrqt5lh1fZQoaAZoCWgPQwj5S4v6JFtmwJSGlFKUaBVLSWgWR0Bhqq+N96TodX2UKGgGaAloD0MIJQUWwJRDVcCUhpRSlGgVSz9oFkdAYawulGgBcXV9lChoBmgJaA9DCHOFd7mILlnAlIaUUpRoFUtgaBZHQGGtcEmplz51fZQoaAZoCWgPQwihvI+judZkwJSGlFKUaBVLQWgWR0BhrWdqcmShdX2UKGgGaAloD0MITFXa4hoFdsCUhpRSlGgVS19oFkdAYa277Kq4pnV9lChoBmgJaA9DCMEb0qjA613AlIaUUpRoFUtJaBZHQGGugwfyPMl1fZQoaAZoCWgPQwhv8lt0suVbwJSGlFKUaBVLU2gWR0BhrrMFEAo5dX2UKGgGaAloD0MIOpZ31QM7c8CUhpRSlGgVS2ZoFkdAYa7xSYPXkHV9lChoBmgJaA9DCInRcwtdEF3AlIaUUpRoFUtFaBZHQGGuv/BFd9l1fZQoaAZoCWgPQwip3EQtzUVHwJSGlFKUaBVLSGgWR0BhsPsRg7YDdX2UKGgGaAloD0MIwcjLmli4WcCUhpRSlGgVS2toFkdAYbFXXAdn03V9lChoBmgJaA9DCI4CRMHMKHDAlIaUUpRoFUt8aBZHQGGx6MBIWgx1fZQoaAZoCWgPQwhcdLLUehdlwJSGlFKUaBVLbmgWR0Bhsu38XN1RdX2UKGgGaAloD0MI1XjpJnFKd8CUhpRSlGgVS3JoFkdAYbOAHVwxWXV9lChoBmgJaA9DCPLuyFjtsXLAlIaUUpRoFUtoaBZHQGG2SCOFQEZ1fZQoaAZoCWgPQwij5xa6EsdfwJSGlFKUaBVLY2gWR0Bhtm+wkgOjdX2UKGgGaAloD0MI/gxv1uDVT8CUhpRSlGgVS0poFkdAYbZqptJnQXV9lChoBmgJaA9DCHeHFAMk5lzAlIaUUpRoFUt6aBZHQGG3SfthNM51fZQoaAZoCWgPQwjo9pLGqAd4wJSGlFKUaBVLWGgWR0BhuRSFXaJzdX2UKGgGaAloD0MIS5ARUKGMfcCUhpRSlGgVS21oFkdAYbkqNp/PPnV9lChoBmgJaA9DCFQ3F39bDmHAlIaUUpRoFUtnaBZHQGG5x5kbxVh1fZQoaAZoCWgPQwhzLVqAtqRYwJSGlFKUaBVLZGgWR0BhuazcAR02dX2UKGgGaAloD0MIvvp46LsXPsCUhpRSlGgVS1NoFkdAYbq0qpcX33V9lChoBmgJaA9DCN9vtOMGNHnAlIaUUpRoFUtkaBZHQGG6oa1kUbl1fZQoaAZoCWgPQwiXb31Yb2NdwJSGlFKUaBVLQWgWR0BhuxDzAeq8dX2UKGgGaAloD0MIMNXMWgrICECUhpRSlGgVS3FoFkdAYbxDTjNpunV9lChoBmgJaA9DCPpeQ3CciHHAlIaUUpRoFUt1aBZHQGG8jk+5e7d1fZQoaAZoCWgPQwjidJKtLlpawJSGlFKUaBVLO2gWR0BhvPE/B3zMdX2UKGgGaAloD0MI+MQ6VX4pccCUhpRSlGgVS2doFkdAYb1kLhJiAnV9lChoBmgJaA9DCPBsj94wInfAlIaUUpRoFUtmaBZHQGG91N5+pfh1fZQoaAZoCWgPQwgEr5Y7M+xswJSGlFKUaBVLQGgWR0BhwLHEMspYdX2UKGgGaAloD0MI0Jz1KUc5ccCUhpRSlGgVS3toFkdAYcDxGUfPonV9lChoBmgJaA9DCCygUE8fYVPAlIaUUpRoFUtFaBZHQGHBbEYO2Ap1fZQoaAZoCWgPQwhMqrab4ApdwJSGlFKUaBVLZmgWR0Bhwca2nbZfdX2UKGgGaAloD0MIaqM6HUgDcMCUhpRSlGgVS3RoFkdAYcNg1FYuCnV9lChoBmgJaA9DCGwGuCBbrlrAlIaUUpRoFUteaBZHQGHDocR15jZ1fZQoaAZoCWgPQwiw6NZreupbwJSGlFKUaBVLV2gWR0BhxG6Ae7tidX2UKGgGaAloD0MIx9l0BHCbVsCUhpRSlGgVS0BoFkdAYcRwXIlt0nV9lChoBmgJaA9DCEsfuqA+8GnAlIaUUpRoFUtfaBZHQGHFvVmSQo11fZQoaAZoCWgPQwj034PXLg5kwJSGlFKUaBVLT2gWR0BhxdehPCVKdX2UKGgGaAloD0MIUP2DSIY8L8CUhpRSlGgVS09oFkdAYca76pHZsnV9lChoBmgJaA9DCLSqJR3lRFzAlIaUUpRoFUuMaBZHQGHHKT8pCrt1fZQoaAZoCWgPQwhIqYQn9HR2wJSGlFKUaBVLf2gWR0Bhx5AbADaHdX2UKGgGaAloD0MI6bevA+dNWsCUhpRSlGgVS3RoFkdAYcfozvZyuXV9lChoBmgJaA9DCApq+BbWwlnAlIaUUpRoFUtIaBZHQGHJVG9YfXB1fZQoaAZoCWgPQwhgWtQnuYtYwJSGlFKUaBVLd2gWR0BhyedXko4NdX2UKGgGaAloD0MIOGivPh6IQMCUhpRSlGgVS3NoFkdAYcm5cTrVv3V9lChoBmgJaA9DCDcWFAZlyWDAlIaUUpRoFUtZaBZHQGHLnLq2SdR1fZQoaAZoCWgPQwgWwf9WsiZYwJSGlFKUaBVLSWgWR0Bhy8s6JZW8dX2UKGgGaAloD0MIEarU7AGuasCUhpRSlGgVS2JoFkdAYcv4iX6ZY3V9lChoBmgJaA9DCN6Th4XagGDAlIaUUpRoFUtWaBZHQGHNjRc/t6Z1fZQoaAZoCWgPQwjbEyS2u8xhwJSGlFKUaBVLRWgWR0BhzcIC2c8UdX2UKGgGaAloD0MIoFOQn43yR8CUhpRSlGgVS1ZoFkdAYc5Y3eenRHV9lChoBmgJaA9DCOj4aHHGKEXAlIaUUpRoFUtZaBZHQGHOrb5/LDB1fZQoaAZoCWgPQwj8prBSQQVQwJSGlFKUaBVLPmgWR0BhztkMCtA+dX2UKGgGaAloD0MIpkI8Eq/HZMCUhpRSlGgVS3JoFkdAYc7h99c8knV9lChoBmgJaA9DCKW9wRcmO3LAlIaUUpRoFUtYaBZHQGHRKlxffGd1fZQoaAZoCWgPQwiNDd3sDwdQwJSGlFKUaBVLYWgWR0Bh0nuPV/c4dX2UKGgGaAloD0MI88e0No3OYcCUhpRSlGgVS3FoFkdAYdKoUi6g/XV9lChoBmgJaA9DCI1iuaVVwmDAlIaUUpRoFUtwaBZHQGHTYLCvX9R1fZQoaAZoCWgPQwjcm98w0VhjwJSGlFKUaBVLV2gWR0Bh065qdpZfdX2UKGgGaAloD0MIPWGJBxR4bcCUhpRSlGgVS1xoFkdAYdQipvP1MHV9lChoBmgJaA9DCKmG/Z5YjFTAlIaUUpRoFUs9aBZHQGHUh+fAbhp1fZQoaAZoCWgPQwgzMzMz87N+wJSGlFKUaBVLZGgWR0Bh1Ks6q815dX2UKGgGaAloD0MIaD9SRIaJVcCUhpRSlGgVSz9oFkdAYdXt52QnyHV9lChoBmgJaA9DCKtZZ3zfkWjAlIaUUpRoFUtgaBZHQGHWz3AVO9F1fZQoaAZoCWgPQwiD9urjIcNrwJSGlFKUaBVLTWgWR0Bh11GoaUA1dX2UKGgGaAloD0MIYmngR3VCcMCUhpRSlGgVS2toFkdAYdfpAUtZm3V9lChoBmgJaA9DCG/x8J4DyWrAlIaUUpRoFUtSaBZHQGHYEkB0ZFZ1fZQoaAZoCWgPQwi8P96r1showJSGlFKUaBVLYWgWR0Bh2K7CiyprdX2UKGgGaAloD0MI8gpET8qya8CUhpRSlGgVS1JoFkdAYdo8Md92HXV9lChoBmgJaA9DCFu0AG2rGlzAlIaUUpRoFUtIaBZHQGHaqUmlZYB1fZQoaAZoCWgPQwgvbM1W3tR1wJSGlFKUaBVLUWgWR0Bh23wEyLyddX2UKGgGaAloD0MINlfNc0SOdcCUhpRSlGgVS0xoFkdAYdvS5RTCL3V9lChoBmgJaA9DCJqTF5mAblzAlIaUUpRoFUtVaBZHQGHdJQ1rIo51fZQoaAZoCWgPQwhEaW/whZ1nwJSGlFKUaBVLWGgWR0Bh3nC2tuDSdX2UKGgGaAloD0MINsmP+JXNcsCUhpRSlGgVS11oFkdAYd6eUY8+zXV9lChoBmgJaA9DCF/waU6e2HTAlIaUUpRoFUuTaBZHQGHfDMFEAo51ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2_Toan/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:327e3c3bde889def44f986f886626fb2b95bce48def63e6b625c2ed47ce5e1fd
3
+ size 87929
ppo-LunarLander-v2_Toan/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:956fe6cbea56672cd19db1eb96e86de93f3bb0408fd9af2a96137a5a6ffab933
3
+ size 43201
ppo-LunarLander-v2_Toan/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2_Toan/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (276 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -179.31259812260396, "std_reward": 65.60392361927403, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T18:53:07.837690"}