---
license: mit
datasets:
- codeparrot/codeparrot-clean
tags:
- text-generation
- code-generation
- gpt2-large
widget:
- text: >-
def hello_world():
example_title: Code Generation Example 1
- text: >-
example_title: Code Generation Example 2
pipeline_tag: text-generation
inference:
parameters:
max_new_tokens: 30
temperature: 0.5
num_return_sequences: 1
do_sample: true
---
# Code Generation using GPT2-Large
This is a GPT2-large model that's further fine-tuned on the Codeparrot clean dataset with a custom metric focused on code generation.
I've further trained the tokenizer initialized from the GPT2-large on the same dataset to better align the tokenization for generating code.
## Model description
This Model has the same architecture and Parameters as the GPT2-large model. Please refer to this [link](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) to know more about the model details.
## Intended Use & Limitations
This model is intended to generate code for the required function based on a small description of the output required.
**Note:** The model is primarily trained with an objective of code generation.
## Usage
You can use this model directly to get the summaries:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load Code Generator LLM and tokenizer from checkpoint
tokenizer = AutoTokenizer.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = AutoModelForCausalLM.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
inputs = tokenizer("def hello_world():", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs,
max_new_tokens= 30,
temperature= 0.5,
num_return_sequences= 1)
print(tokenizer.batch_decode(outputs)[0])
###########OUTPUT###########
def hello_world():
return "Hello World!"
@app.route("/hello_world")
def hello_world():
return "Hello World!"
```
> Designed and Developed with ♥ by [Praneet](https://deathreaper0965.github.io/) | [LinkedIn](http://linkedin.com/in/deathreaper0965) | [GitHub](https://github.com/DeathReaper0965/)