Deci
/

File size: 6,352 Bytes
870e414
c00a8fe
870e414
5c63f79
fce0306
ca3d139
 
837a3eb
 
 
 
5c63f79
 
 
 
 
 
 
 
a308566
5c63f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870e414
5c63f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42859ad
5c63f79
 
 
 
 
 
42859ad
5c63f79
 
af2ef45
5c63f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797fe7a
5c63f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797fe7a
 
d9e098a
797fe7a
841df46
ff0676f
5c63f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e688b3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
pipeline_tag: text-generation
license: apache-2.0
tags:
- text generation
- Deci AI
- DeciCoder
programming_language:
  - Java
  - JavaScript
  - Python
metrics:
- code_eval
inference: true
widget:
- text: 'def print_hello_world():'
  example_title: Hello world
  group: Python
model-index:
- name: DeciCoder-1b
  results:
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.191
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.184
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.166
      verified: false
datasets:
- bigcode/starcoderdata
---

# Model Card for DeciCoder 1B

DeciCoder 1B is a 1 billion parameter decoder-only code completion model
trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata).
The model uses Grouped Query Attention and has a context window of 2048
tokens. It was trained using a Fill-in-the-Middle training objective. The model's
architecture was generated by Deci's proprietary Neural Architecture
Search-based technology, AutoNAC.

## Model Details

- **Developed by:** Deci 
- **Model type:** DeciCoder is an auto-regressive language model based on the transformer decoder architecture, using Grouped Query Attention.
- **Language(s):** Python, Java, JavaScript
- **License:** Model checkpoints are licensed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Model Architecture

| Parameters | Layers | Heads  | Sequence Length  | GQA num_key_value_heads  | Hidden Size  |
|:----------|:----------|:----------|:----------|:----------|:----------|
| 1.1B    | 20    | 32    | 2048   | 4  | 2048 |  |


- **Decoder layer:** Grouped Query Attention [Ainslie et al., 2023](https://arxiv.org/abs/2305.13245)
- **Position Embeddings:** Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864)

## Uses

The model is intended to do single/multiline code completion from a
context window of up to 2048k tokens. It is *not* an instruction model
and commands like \"Write a function that computes the absolute value of
an integer,\" won't yield the desired results. A more effective approach
is to frame instructions in the style of source code comments (e.g. \#
this function calculates the absolute value of an integer) or to present
a function signature and docstring, enabling the model to complete the
function's body.

### How to Use

```bibtex
# pip install -q transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "Deci/DeciCoder-1b"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device)

inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
```

### Attribution

DeciCoder was trained on StarCoder Training Dataset, filtered for
Python, Java, and Javascript code. For additional information, please
refer to [https://huggingface.co/datasets/bigcode/starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata).

### Limitations

The model has undergone training with source code from Python, Java, and
JavaScript. While the primary language in the source is English, it does
contain other languages. Therefore, the model can produce code snippets
given some context. However, there\'s no assurance that the resulting
code will function as expected. It might be suboptimal, contain bugs, or
even exploits.

## Training Details

### Training Data

DeciCoder was trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata)


### Training Procedure 

- **Warm-Up Steps**: 9000
- **Total Training Steps**: 284k
- **Total Tokens**: 446B
- **Global Batch Size**: 768
- **Optimizer**: AdamW
- **Optimizer Parameters**: beta1=0.9, beta2=0.95
- **Weight Decay**: 0.1
- **Learning Rate**: 4e-4
- **Learning Rate Schedule**: cosine

## Evaluation

Below are DeciCoder's pass@1 on MultiPL HumanEval scores

| Python | JavaScript | Java  |
|:----------|:----------|:----------|
| 19.1%    | 18.4%    | 16.6%    |


### Runtime Benchmarks

|Inference Tool/Hardware | A10 (tokens/sec) |A100 (tokens/sec) |
|:----------|:----------|:----------|
| PyTorch  | 1,364.2 | 3,244.4 |
| Infery LLM | 3,889.3   | 11,676.8  |

- Throughput (tokens/sec) - Measured with optimal batch size per hardware - A10 on BS 128, A100 on BS 512

## Documentation

- [Notebook](https://colab.research.google.com/drive/1JCxvBsWCZKHfIcHSMVf7GZCs3ClMQPjs)
- Blog post: [Introducing DeciCoder: The New Gold Standard in Efficient and Accurate Code Generation](https://deci.ai/blog/decicoder-efficient-and-accurate-code-generation-llm/)
- Questions:Feel free to contact us via our [Discord Community!](https://discord.com/invite/p9ecgRhDR8/)

## How to Cite

Please cite this model using this format.

```bibtex
@misc{DeciFoundationModels,
title = {DeciCoder},
author = {DeciAI Research Team},
year = {2023}
url={[https://huggingface.co/deci/decicoder-1b](https://huggingface.co/deci/decicoder-1b)},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Deci__DeciCoder-1b)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 25.6   |
| ARC (25-shot)         | 21.16          |
| HellaSwag (10-shot)   | 31.09    |
| MMLU (5-shot)         | 24.34         |
| TruthfulQA (0-shot)   | 47.05   |
| Winogrande (5-shot)   | 50.83   |
| GSM8K (5-shot)        | 1.74        |
| DROP (3-shot)         | 2.98         |