File size: 10,122 Bytes
60965be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union

import torch


class AttentionMaskConverter:
    """
    A utility attention mask class that allows one to:
        - Create a causal 4d mask
        - Create a causal 4d mask with slided window
        - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
          key_value_length) that can be multiplied with attention scores

    Parameters:
        is_causal (`bool`):
            Whether the attention mask should be a uni-directional (causal) or bi-directional mask.

        sliding_window (`int`, *optional*):
            Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
    """

    def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
        self.is_causal = is_causal
        self.sliding_window = sliding_window

        if self.sliding_window is not None and self.sliding_window <= 0:
            raise ValueError(
                f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
            )

    def to_causal_4d(
        self,
        batch_size: int,
        query_length: int,
        key_value_length: int,
        dtype: torch.dtype = torch.float32,
        device: Union[torch.device, "str"] = "cpu",
    ) -> torch.Tensor:
        """
        Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
        bias to upper right hand triangular matrix (causal mask).
        """
        if not self.is_causal:
            raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")

        # If shape is not cached, create a new causal mask and cache it
        input_shape = (batch_size, query_length)
        past_key_values_length = key_value_length - query_length

        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        causal_4d_mask = None
        if input_shape[-1] > 1 or self.sliding_window is not None:
            causal_4d_mask = self._make_causal_mask(
                input_shape,
                dtype,
                device=device,
                past_key_values_length=past_key_values_length,
                sliding_window=self.sliding_window,
            )

        return causal_4d_mask

    def to_4d(
        self,
        attention_mask_2d: torch.Tensor,
        query_length: int,
        key_value_length: Optional[int] = None,
        dtype: torch.dtype = torch.float32,
    ) -> torch.Tensor:
        """
        Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
        key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
        causal, a causal mask will be added.
        """
        input_shape = (attention_mask_2d.shape[0], query_length)

        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        causal_4d_mask = None
        if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
            if key_value_length is None:
                raise ValueError(
                    "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
                )

            past_key_values_length = key_value_length - query_length
            causal_4d_mask = self._make_causal_mask(
                input_shape,
                dtype,
                device=attention_mask_2d.device,
                past_key_values_length=past_key_values_length,
                sliding_window=self.sliding_window,
            )
        elif self.sliding_window is not None:
            raise NotImplementedError("Sliding window is currently only implemented for causal masking")

        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
            attention_mask_2d.device
        )
        expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask

        return expanded_4d_mask

    @staticmethod
    def _make_causal_mask(
        input_ids_shape: torch.Size,
        dtype: torch.dtype,
        device: torch.device,
        past_key_values_length: int = 0,
        sliding_window: Optional[int] = None,
    ):
        """
        Make causal mask used for bi-directional self-attention.
        """
        bsz, tgt_len = input_ids_shape
        mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
        mask_cond = torch.arange(mask.size(-1), device=device)
        mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)

        mask = mask.to(dtype)

        if past_key_values_length > 0:
            mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)

        # add lower triangular sliding window mask if necessary
        if sliding_window is not None:
            diagonal = past_key_values_length - sliding_window + 1

            context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
            mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)

        return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)

    @staticmethod
    def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
        """
        Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
        """
        bsz, src_len = mask.size()
        tgt_len = tgt_len if tgt_len is not None else src_len

        expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

        inverted_mask = 1.0 - expanded_mask

        return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


def _prepare_4d_causal_attention_mask(
    attention_mask: Optional[torch.Tensor],
    input_shape: Union[torch.Size, Tuple, List],
    inputs_embeds: torch.Tensor,
    past_key_values_length: int,
    sliding_window: Optional[int] = None,
):
    """
    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
    `(batch_size, key_value_length)`

    Args:
        attention_mask (`torch.Tensor` or `None`):
            A 2D attention mask of shape `(batch_size, key_value_length)`
        input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
            The input shape should be a tuple that defines `(batch_size, query_length)`.
        inputs_embeds (`torch.Tensor`):
            The embedded inputs as a torch Tensor.
        past_key_values_length (`int`):
            The length of the key value cache.
        sliding_window (`int`, *optional*):
            If the model uses windowed attention, a sliding window should be passed.
    """
    attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)

    key_value_length = input_shape[-1] + past_key_values_length

    # 4d mask is passed through the layers
    if attention_mask is not None:
        attention_mask = attn_mask_converter.to_4d(
            attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
        )
    else:
        attention_mask = attn_mask_converter.to_causal_4d(
            input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
        )

    return attention_mask


def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
    `(batch_size, key_value_length)`

    Args:
        mask (`torch.Tensor` or `None`):
            A 2D attention mask of shape `(batch_size, key_value_length)`
        dtype (`torch.dtype`):
            The torch dtype the created mask shall have.
        tgt_len (`int`):
            The target length or query length the created mask shall have.
    """
    return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)


def _create_4d_causal_attention_mask(
    input_shape: Union[torch.Size, Tuple, List],
    dtype: torch.dtype,
    device: torch.device,
    past_key_values_length: int = 0,
    sliding_window: Optional[int] = None,
):
    """
    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`

    Args:
        input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
            The input shape should be a tuple that defines `(batch_size, query_length)`.
        dtype (`torch.dtype`):
            The torch dtype the created mask shall have.
        device (`int`):
            The torch device the created mask shall have.
        sliding_window (`int`, *optional*):
            If the model uses windowed attention, a sliding window should be passed.
    """
    attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)

    key_value_length = past_key_values_length + input_shape[-1]
    attention_mask = attn_mask_converter.to_causal_4d(
        input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
    )

    return attention_mask