Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,229 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
<!--
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
### Downstream Use [optional]
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# SUMMARY
|
7 |
|
8 |
+
Just a model using to learn Fine Tuning of 'DialoGPT-medium'
|
9 |
+
- on a self made datasets
|
10 |
+
- on a self made special tokens
|
11 |
+
- on a multiple fine tuned with ~30K dataset (in progress mode)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
If interested in how I got to this point and how I created the datasets you can visit:
|
14 |
+
[Crafting GPT2 for Personalized AI-Preparing Data the Long Way](https://medium.com/@deeokay/the-soul-in-the-machine-crafting-gpt2-for-personalized-ai-9d38be3f635f)
|
15 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
|
18 |
+
## DECLARING NEW SPECIAL TOKENS
|
19 |
+
|
20 |
+
```python
|
21 |
+
special_tokens_dict = {
|
22 |
+
'eos_token': '<|STOP|>',
|
23 |
+
'bos_token': '<|STOP|>',
|
24 |
+
'pad_token': '<|PAD|>',
|
25 |
+
'additional_special_tokens': ['<|BEGIN_QUERY|>', '<|BEGIN_QUERY|>',
|
26 |
+
'<|BEGIN_ANALYSIS|>', '<|END_ANALYSIS|>',
|
27 |
+
'<|BEGIN_RESPONSE|>', '<|END_RESPONSE|>',
|
28 |
+
'<|BEGIN_SENTIMENT|>', '<|END_SENTIMENT|>',
|
29 |
+
'<|BEGIN_CLASSIFICATION|>', '<|END_CLASSIFICATION|>',]
|
30 |
+
}
|
31 |
+
|
32 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
33 |
+
model.resize_token_embeddings(len(tokenizer))
|
34 |
+
|
35 |
+
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids('<|STOP|>')
|
36 |
+
tokenizer.bos_token_id = tokenizer.convert_tokens_to_ids('<|STOP|>')
|
37 |
+
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids('<|PAD|>')
|
38 |
+
```
|
39 |
+
|
40 |
+
The order of tokens is as follows:
|
41 |
+
|
42 |
+
```python
|
43 |
+
def combine_text(user_prompt, analysis, sentiment, new_response, classification):
|
44 |
+
user_q = f"<|STOP|><|BEGIN_QUERY|>{user_prompt}<|END_QUERY|>"
|
45 |
+
analysis = f"<|BEGIN_ANALYSIS|>{analysis}<|END_ANALYSIS|>"
|
46 |
+
new_response = f"<|BEGIN_RESPONSE|>{new_response}<|END_RESPONSE|>"
|
47 |
+
sentiment = f"<|BEGIN_SENTIMENT|>Sentiment: {sentiment}<|END_SENTIMENT|><|STOP|>"
|
48 |
+
classification = f"<|BEGIN_CLASSIFICATION|>{classification}<|END_CLASSIFICATION|>"
|
49 |
+
return user_q + analysis + new_response + classification + sentiment
|
50 |
+
```
|
51 |
+
|
52 |
+
## INFERANCING
|
53 |
+
|
54 |
+
I am currently testing two ways, if anyone knows a better one, please let me know!
|
55 |
+
|
56 |
+
```python
|
57 |
+
import torch
|
58 |
+
from transformers import AutoModelForCausalLLM, AutoTokenizer
|
59 |
+
|
60 |
+
models_folder = "Deeokay/DialoGPT-special-tokens-medium4"
|
61 |
+
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(models_folder)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(models_folder)
|
64 |
+
|
65 |
+
# Device configuration <<change as needed>>
|
66 |
+
device = torch.device("cpu")
|
67 |
+
model.to(device)
|
68 |
+
|
69 |
+
```
|
70 |
+
|
71 |
+
### OPTION 1 INFERFENCE
|
72 |
+
|
73 |
+
```python
|
74 |
+
import time
|
75 |
+
|
76 |
+
class Stopwatch:
|
77 |
+
def __init__(self):
|
78 |
+
self.start_time = None
|
79 |
+
self.end_time = None
|
80 |
+
|
81 |
+
def start(self):
|
82 |
+
self.start_time = time.time()
|
83 |
+
|
84 |
+
def stop(self):
|
85 |
+
self.end_time = time.time()
|
86 |
+
|
87 |
+
def elapsed_time(self):
|
88 |
+
if self.start_time is None:
|
89 |
+
return "Stopwatch hasn't been started"
|
90 |
+
if self.end_time is None:
|
91 |
+
return "Stopwatch hasn't been stopped"
|
92 |
+
return self.end_time - self.start_time
|
93 |
+
|
94 |
+
stopwatch1 = Stopwatch()
|
95 |
+
|
96 |
+
def generate_response(input_text, max_length=250):
|
97 |
+
|
98 |
+
stopwatch1.start()
|
99 |
+
|
100 |
+
# Prepare the input
|
101 |
+
# input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>{input_text}<|END_ANALYSIS|><|BEGIN_RESPONSE|>"
|
102 |
+
input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>"
|
103 |
+
|
104 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
105 |
+
|
106 |
+
# Create attention mask
|
107 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
108 |
+
|
109 |
+
# Generate
|
110 |
+
output = model.generate(
|
111 |
+
input_ids,
|
112 |
+
max_new_tokens=max_length,
|
113 |
+
num_return_sequences=1,
|
114 |
+
no_repeat_ngram_size=2,
|
115 |
+
attention_mask=attention_mask,
|
116 |
+
pad_token_id=tokenizer.eos_token_id,
|
117 |
+
eos_token_id=tokenizer.convert_tokens_to_ids('<|STOP|>'),
|
118 |
+
)
|
119 |
+
|
120 |
+
stopwatch1.stop()
|
121 |
+
return tokenizer.decode(output[0], skip_special_tokens=False)
|
122 |
+
```
|
123 |
+
|
124 |
+
### OPTION 2 INFERNCE
|
125 |
+
|
126 |
+
```python
|
127 |
+
import time
|
128 |
+
|
129 |
+
class Stopwatch:
|
130 |
+
def __init__(self):
|
131 |
+
self.start_time = None
|
132 |
+
self.end_time = None
|
133 |
+
|
134 |
+
def start(self):
|
135 |
+
self.start_time = time.time()
|
136 |
+
|
137 |
+
def stop(self):
|
138 |
+
self.end_time = time.time()
|
139 |
+
|
140 |
+
def elapsed_time(self):
|
141 |
+
if self.start_time is None:
|
142 |
+
return "Stopwatch hasn't been started"
|
143 |
+
if self.end_time is None:
|
144 |
+
return "Stopwatch hasn't been stopped"
|
145 |
+
return self.end_time - self.start_time
|
146 |
+
|
147 |
+
stopwatch2 = Stopwatch()
|
148 |
+
|
149 |
+
def generate_response2(input_text, max_length=250):
|
150 |
+
|
151 |
+
stopwatch2.start()
|
152 |
+
|
153 |
+
# Prepare the input
|
154 |
+
# input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>{input_text}<|END_ANALYSIS|><|BEGIN_RESPONSE|>"
|
155 |
+
input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>"
|
156 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
157 |
+
|
158 |
+
# Create attention mask
|
159 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
160 |
+
|
161 |
+
# # 2ND OPTION FOR : Generate
|
162 |
+
output = model.generate(
|
163 |
+
input_ids,
|
164 |
+
max_new_tokens=max_length,
|
165 |
+
attention_mask=attention_mask,
|
166 |
+
do_sample=True,
|
167 |
+
temperature=0.4,
|
168 |
+
top_k=60,
|
169 |
+
no_repeat_ngram_size=2,
|
170 |
+
pad_token_id=tokenizer.pad_token_id,
|
171 |
+
eos_token_id=tokenizer.eos_token_id,
|
172 |
+
)
|
173 |
+
|
174 |
+
stopwatch2.stop()
|
175 |
+
return tokenizer.decode(output[0], skip_special_tokens=False)
|
176 |
+
```
|
177 |
+
### DECODING ANSWER
|
178 |
+
|
179 |
+
When I need just the response
|
180 |
+
|
181 |
+
```python
|
182 |
+
def decode(text):
|
183 |
+
full_text = text
|
184 |
+
|
185 |
+
# Extract the response part
|
186 |
+
start_token = "<|BEGIN_RESPONSE|>"
|
187 |
+
end_token = "<|END_RESPONSE|>"
|
188 |
+
start_idx = full_text.find(start_token)
|
189 |
+
end_idx = full_text.find(end_token)
|
190 |
+
|
191 |
+
if start_idx != -1 and end_idx != -1:
|
192 |
+
response = full_text[start_idx + len(start_token):end_idx].strip()
|
193 |
+
else:
|
194 |
+
response = full_text.strip()
|
195 |
+
|
196 |
+
return response
|
197 |
+
```
|
198 |
+
|
199 |
+
### MY SETUP
|
200 |
+
|
201 |
+
I use the stopwatch to time the responses and I use both inference to see the difference
|
202 |
+
|
203 |
+
```python
|
204 |
+
input_text = "Who is Steve Jobs and what was contribution?"
|
205 |
+
response1_full = generate_response(input_text)
|
206 |
+
#response1 = decode(response1_full)
|
207 |
+
print(f"Input: {input_text}")
|
208 |
+
print("=======================================")
|
209 |
+
print(f"Response1: {response1_full}")
|
210 |
+
elapsed1 = stopwatch1.elapsed_time()
|
211 |
+
print(f"Process took {elapsed1:.4f} seconds")
|
212 |
+
print("=======================================")
|
213 |
+
response2_full = generate_response2(input_text)
|
214 |
+
#response2 = decode(response2_full)
|
215 |
+
print(f"Response2: {response2_full}")
|
216 |
+
elapsed2 = stopwatch2.elapsed_time()
|
217 |
+
print(f"Process took {elapsed2:.4f} seconds")
|
218 |
+
print("=======================================")
|
219 |
+
```
|
220 |
|
|
|
221 |
|
222 |
### Out-of-Scope Use
|
223 |
|
224 |
+
Well everything that has a factual data.. trust at your own risk!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
Never tested on mathamatical knowledge.
|
227 |
|
228 |
+
I quite enjoy how the response feels closer to what I had in mind..
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|