Deeokay commited on
Commit
1f35170
1 Parent(s): 9b83c5a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +213 -181
README.md CHANGED
@@ -3,197 +3,229 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # SUMMARY
7
 
8
+ Just a model using to learn Fine Tuning of 'DialoGPT-medium'
9
+ - on a self made datasets
10
+ - on a self made special tokens
11
+ - on a multiple fine tuned with ~30K dataset (in progress mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ If interested in how I got to this point and how I created the datasets you can visit:
14
+ [Crafting GPT2 for Personalized AI-Preparing Data the Long Way](https://medium.com/@deeokay/the-soul-in-the-machine-crafting-gpt2-for-personalized-ai-9d38be3f635f)
15
+ <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
16
 
 
17
 
18
+ ## DECLARING NEW SPECIAL TOKENS
19
+
20
+ ```python
21
+ special_tokens_dict = {
22
+ 'eos_token': '<|STOP|>',
23
+ 'bos_token': '<|STOP|>',
24
+ 'pad_token': '<|PAD|>',
25
+ 'additional_special_tokens': ['<|BEGIN_QUERY|>', '<|BEGIN_QUERY|>',
26
+ '<|BEGIN_ANALYSIS|>', '<|END_ANALYSIS|>',
27
+ '<|BEGIN_RESPONSE|>', '<|END_RESPONSE|>',
28
+ '<|BEGIN_SENTIMENT|>', '<|END_SENTIMENT|>',
29
+ '<|BEGIN_CLASSIFICATION|>', '<|END_CLASSIFICATION|>',]
30
+ }
31
+
32
+ tokenizer.add_special_tokens(special_tokens_dict)
33
+ model.resize_token_embeddings(len(tokenizer))
34
+
35
+ tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids('<|STOP|>')
36
+ tokenizer.bos_token_id = tokenizer.convert_tokens_to_ids('<|STOP|>')
37
+ tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids('<|PAD|>')
38
+ ```
39
+
40
+ The order of tokens is as follows:
41
+
42
+ ```python
43
+ def combine_text(user_prompt, analysis, sentiment, new_response, classification):
44
+ user_q = f"<|STOP|><|BEGIN_QUERY|>{user_prompt}<|END_QUERY|>"
45
+ analysis = f"<|BEGIN_ANALYSIS|>{analysis}<|END_ANALYSIS|>"
46
+ new_response = f"<|BEGIN_RESPONSE|>{new_response}<|END_RESPONSE|>"
47
+ sentiment = f"<|BEGIN_SENTIMENT|>Sentiment: {sentiment}<|END_SENTIMENT|><|STOP|>"
48
+ classification = f"<|BEGIN_CLASSIFICATION|>{classification}<|END_CLASSIFICATION|>"
49
+ return user_q + analysis + new_response + classification + sentiment
50
+ ```
51
+
52
+ ## INFERANCING
53
+
54
+ I am currently testing two ways, if anyone knows a better one, please let me know!
55
+
56
+ ```python
57
+ import torch
58
+ from transformers import AutoModelForCausalLLM, AutoTokenizer
59
+
60
+ models_folder = "Deeokay/DialoGPT-special-tokens-medium4"
61
+
62
+ model = AutoModelForCausalLM.from_pretrained(models_folder)
63
+ tokenizer = AutoTokenizer.from_pretrained(models_folder)
64
+
65
+ # Device configuration <<change as needed>>
66
+ device = torch.device("cpu")
67
+ model.to(device)
68
+
69
+ ```
70
+
71
+ ### OPTION 1 INFERFENCE
72
+
73
+ ```python
74
+ import time
75
+
76
+ class Stopwatch:
77
+ def __init__(self):
78
+ self.start_time = None
79
+ self.end_time = None
80
+
81
+ def start(self):
82
+ self.start_time = time.time()
83
+
84
+ def stop(self):
85
+ self.end_time = time.time()
86
+
87
+ def elapsed_time(self):
88
+ if self.start_time is None:
89
+ return "Stopwatch hasn't been started"
90
+ if self.end_time is None:
91
+ return "Stopwatch hasn't been stopped"
92
+ return self.end_time - self.start_time
93
+
94
+ stopwatch1 = Stopwatch()
95
+
96
+ def generate_response(input_text, max_length=250):
97
+
98
+ stopwatch1.start()
99
+
100
+ # Prepare the input
101
+ # input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>{input_text}<|END_ANALYSIS|><|BEGIN_RESPONSE|>"
102
+ input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>"
103
+
104
+ input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
105
+
106
+ # Create attention mask
107
+ attention_mask = torch.ones_like(input_ids).to(device)
108
+
109
+ # Generate
110
+ output = model.generate(
111
+ input_ids,
112
+ max_new_tokens=max_length,
113
+ num_return_sequences=1,
114
+ no_repeat_ngram_size=2,
115
+ attention_mask=attention_mask,
116
+ pad_token_id=tokenizer.eos_token_id,
117
+ eos_token_id=tokenizer.convert_tokens_to_ids('<|STOP|>'),
118
+ )
119
+
120
+ stopwatch1.stop()
121
+ return tokenizer.decode(output[0], skip_special_tokens=False)
122
+ ```
123
+
124
+ ### OPTION 2 INFERNCE
125
+
126
+ ```python
127
+ import time
128
+
129
+ class Stopwatch:
130
+ def __init__(self):
131
+ self.start_time = None
132
+ self.end_time = None
133
+
134
+ def start(self):
135
+ self.start_time = time.time()
136
+
137
+ def stop(self):
138
+ self.end_time = time.time()
139
+
140
+ def elapsed_time(self):
141
+ if self.start_time is None:
142
+ return "Stopwatch hasn't been started"
143
+ if self.end_time is None:
144
+ return "Stopwatch hasn't been stopped"
145
+ return self.end_time - self.start_time
146
+
147
+ stopwatch2 = Stopwatch()
148
+
149
+ def generate_response2(input_text, max_length=250):
150
+
151
+ stopwatch2.start()
152
+
153
+ # Prepare the input
154
+ # input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>{input_text}<|END_ANALYSIS|><|BEGIN_RESPONSE|>"
155
+ input_text = f"<|BEGIN_QUERY|>{input_text}<|END_QUERY|><|BEGIN_ANALYSIS|>"
156
+ input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
157
+
158
+ # Create attention mask
159
+ attention_mask = torch.ones_like(input_ids).to(device)
160
+
161
+ # # 2ND OPTION FOR : Generate
162
+ output = model.generate(
163
+ input_ids,
164
+ max_new_tokens=max_length,
165
+ attention_mask=attention_mask,
166
+ do_sample=True,
167
+ temperature=0.4,
168
+ top_k=60,
169
+ no_repeat_ngram_size=2,
170
+ pad_token_id=tokenizer.pad_token_id,
171
+ eos_token_id=tokenizer.eos_token_id,
172
+ )
173
+
174
+ stopwatch2.stop()
175
+ return tokenizer.decode(output[0], skip_special_tokens=False)
176
+ ```
177
+ ### DECODING ANSWER
178
+
179
+ When I need just the response
180
+
181
+ ```python
182
+ def decode(text):
183
+ full_text = text
184
+
185
+ # Extract the response part
186
+ start_token = "<|BEGIN_RESPONSE|>"
187
+ end_token = "<|END_RESPONSE|>"
188
+ start_idx = full_text.find(start_token)
189
+ end_idx = full_text.find(end_token)
190
+
191
+ if start_idx != -1 and end_idx != -1:
192
+ response = full_text[start_idx + len(start_token):end_idx].strip()
193
+ else:
194
+ response = full_text.strip()
195
+
196
+ return response
197
+ ```
198
+
199
+ ### MY SETUP
200
+
201
+ I use the stopwatch to time the responses and I use both inference to see the difference
202
+
203
+ ```python
204
+ input_text = "Who is Steve Jobs and what was contribution?"
205
+ response1_full = generate_response(input_text)
206
+ #response1 = decode(response1_full)
207
+ print(f"Input: {input_text}")
208
+ print("=======================================")
209
+ print(f"Response1: {response1_full}")
210
+ elapsed1 = stopwatch1.elapsed_time()
211
+ print(f"Process took {elapsed1:.4f} seconds")
212
+ print("=======================================")
213
+ response2_full = generate_response2(input_text)
214
+ #response2 = decode(response2_full)
215
+ print(f"Response2: {response2_full}")
216
+ elapsed2 = stopwatch2.elapsed_time()
217
+ print(f"Process took {elapsed2:.4f} seconds")
218
+ print("=======================================")
219
+ ```
220
 
 
221
 
222
  ### Out-of-Scope Use
223
 
224
+ Well everything that has a factual data.. trust at your own risk!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
 
226
+ Never tested on mathamatical knowledge.
227
 
228
+ I quite enjoy how the response feels closer to what I had in mind..
229
 
 
230
 
 
231