File size: 3,718 Bytes
3c35aec 91c4f49 3c35aec 91c4f49 3c35aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
library_name: peft
license: mit
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ebdbe684-057b-4a81-b0ff-3dfd254e49a1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.2`
```yaml
adapter: lora
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0e76883e67c605f0_train_data.json
ds_type: json
field: question
path: /workspace/input_data/0e76883e67c605f0_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: DeepDream2045/ebdbe684-057b-4a81-b0ff-3dfd254e49a1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/0e76883e67c605f0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ebdbe684-057b-4a81-b0ff-3dfd254e49a1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ebdbe684-057b-4a81-b0ff-3dfd254e49a1
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# ebdbe684-057b-4a81-b0ff-3dfd254e49a1
This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7096
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.6352 | 0.0016 | 1 | 5.1592 |
| 2.2311 | 0.0390 | 25 | 1.7820 |
| 2.0822 | 0.0780 | 50 | 1.7096 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |