File size: 13,236 Bytes
a83b588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd20dba
 
 
 
 
a83b588
 
 
 
 
dd20dba
 
a83b588
 
 
 
 
 
 
 
 
 
 
 
dd20dba
a83b588
 
dd20dba
a83b588
 
 
 
 
dd20dba
a83b588
 
dd20dba
 
 
 
 
 
 
 
a83b588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd20dba
a83b588
 
 
 
dd20dba
 
 
 
 
 
 
 
 
 
 
a83b588
 
 
 
dd20dba
 
 
 
a83b588
dd20dba
 
 
 
 
 
 
 
 
 
 
 
 
a83b588
 
 
 
 
 
dd20dba
 
 
 
a83b588
 
 
dd20dba
a83b588
 
dd20dba
a83b588
 
 
 
 
dd20dba
 
a83b588
 
 
dd20dba
 
a83b588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd20dba
 
 
 
a83b588
 
dd20dba
a83b588
dd20dba
 
 
 
 
 
 
 
a83b588
 
 
dd20dba
a83b588
dd20dba
 
 
a83b588
 
 
dd20dba
 
 
 
a83b588
 
dd20dba
a83b588
 
 
dd20dba
 
 
a83b588
dd20dba
a83b588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd20dba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import json
from typing import List

import numpy as np
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer, LlamaTokenizer, T5Tokenizer


class TritonPythonModel:
    """Your Python model must use the same class name. Every Python model
    that is created must have "TritonPythonModel" as the class name.
    """

    def initialize(self, args):
        """`initialize` is called only once when the model is being loaded.
        Implementing `initialize` function is optional. This function allows
        the model to initialize any state associated with this model.
        Parameters
        ----------
        args : dict
          Both keys and values are strings. The dictionary keys and values are:
          * model_config: A JSON string containing the model configuration
          * model_instance_kind: A string containing model instance kind
          * model_instance_device_id: A string containing model instance device ID
          * model_repository: Model repository path
          * model_version: Model version
          * model_name: Model name
        """
        # Parse model configs
        model_config = json.loads(args['model_config'])
        tokenizer_dir = model_config['parameters']['tokenizer_dir'][
            'string_value']
        tokenizer_type = model_config['parameters']['tokenizer_type'][
            'string_value']
        self.add_special_tokens = model_config['parameters'].get(
            'add_special_tokens',
            {'string_value': "false"})['string_value'].lower() in [
                'true', '1', 't', 'y', 'yes'
            ]

        if tokenizer_type == 't5':
            self.tokenizer = T5Tokenizer(vocab_file=tokenizer_dir,
                                         padding_side='left')
        elif tokenizer_type == 'auto':
            self.tokenizer = AutoTokenizer.from_pretrained(
                tokenizer_dir, padding_side='left', trust_remote_code=True)
        elif tokenizer_type == 'llama':
            self.tokenizer = LlamaTokenizer.from_pretrained(
                tokenizer_dir, legacy=False, padding_side='left')
        else:
            raise AttributeError(
                f'Unexpected tokenizer type: {tokenizer_type}')
        self.tokenizer.pad_token = self.tokenizer.eos_token

        self.pad_id = self.tokenizer.encode(self.tokenizer.pad_token,
                                            add_special_tokens=False)[0]

        # Parse model output configs and convert Triton types to numpy types
        output_names = [
            "INPUT_ID", "REQUEST_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS"
        ]
        input_names = ["EMBEDDING_BIAS_WORDS", "EMBEDDING_BIAS_WEIGHTS"]
        for input_name in input_names:
            setattr(
                self,
                input_name.lower() + "_dtype",
                pb_utils.triton_string_to_numpy(
                    pb_utils.get_input_config_by_name(
                        model_config, input_name)['data_type']))

        for output_name in output_names:
            setattr(
                self,
                output_name.lower() + "_dtype",
                pb_utils.triton_string_to_numpy(
                    pb_utils.get_output_config_by_name(
                        model_config, output_name)['data_type']))

    def execute(self, requests):
        """`execute` must be implemented in every Python model. `execute`
        function receives a list of pb_utils.InferenceRequest as the only
        argument. This function is called when an inference is requested
        for this model. Depending on the batching configuration (e.g. Dynamic
        Batching) used, `requests` may contain multiple requests. Every
        Python model, must create one pb_utils.InferenceResponse for every
        pb_utils.InferenceRequest in `requests`. If there is an error, you can
        set the error argument when creating a pb_utils.InferenceResponse.
        Parameters
        ----------
        requests : list
          A list of pb_utils.InferenceRequest
        Returns
        -------
        list
          A list of pb_utils.InferenceResponse. The length of this list must
          be the same as `requests`
        """

        responses = []

        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        logger = pb_utils.Logger
        for idx, request in enumerate(requests):
            # Get input tensors
            query = pb_utils.get_input_tensor_by_name(request,
                                                      'QUERY').as_numpy()
            batch_dim = query.shape[0]
            if batch_dim != 1:

                err_str = "Inflight batching backend expects requests with batch size of 1."
                logger.log_error(err_str)
                responses.append(
                    pb_utils.InferenceResponse(
                        output_tensors=[],
                        error=pb_utils.TritonError(err_str)))
                continue

            request_output_len = pb_utils.get_input_tensor_by_name(
                request, 'REQUEST_OUTPUT_LEN').as_numpy()

            bad_words_dict = pb_utils.get_input_tensor_by_name(
                request, 'BAD_WORDS_DICT')
            if bad_words_dict is not None:
                bad_words_dict = bad_words_dict.as_numpy()

            stop_words_dict = pb_utils.get_input_tensor_by_name(
                request, 'STOP_WORDS_DICT')
            if stop_words_dict is not None:
                stop_words_dict = stop_words_dict.as_numpy()

            embedding_bias_words = pb_utils.get_input_tensor_by_name(
                request, 'EMBEDDING_BIAS_WORDS')
            if embedding_bias_words is not None:
                embedding_bias_words = embedding_bias_words.as_numpy()

            embedding_bias_weights = pb_utils.get_input_tensor_by_name(
                request, 'EMBEDDING_BIAS_WEIGHTS')
            if embedding_bias_weights is not None:
                embedding_bias_weights = embedding_bias_weights.as_numpy()

            # Preprocessing input data.
            input_id, request_input_len = self._create_request(query)
            bad_words = self._to_word_list_format(bad_words_dict)
            stop_words = self._to_word_list_format(stop_words_dict)

            embedding_bias = self._get_embedding_bias(
                embedding_bias_words, embedding_bias_weights,
                self.embedding_bias_weights_dtype)

            # Create output tensors. You need pb_utils.Tensor
            # objects to create pb_utils.InferenceResponse.
            input_id_tensor = pb_utils.Tensor(
                'INPUT_ID', input_id.astype(self.input_id_dtype))
            request_input_len_tensor = pb_utils.Tensor(
                'REQUEST_INPUT_LEN',
                request_input_len.astype(self.request_input_len_dtype))
            request_output_len_tensor = pb_utils.Tensor(
                'REQUEST_OUTPUT_LEN', request_output_len)
            bad_words_ids_tensor = pb_utils.Tensor('BAD_WORDS_IDS', bad_words)
            stop_words_ids_tensor = pb_utils.Tensor('STOP_WORDS_IDS',
                                                    stop_words)
            embedding_bias_tensor = pb_utils.Tensor('EMBEDDING_BIAS',
                                                    embedding_bias)

            inference_response = pb_utils.InferenceResponse(output_tensors=[
                input_id_tensor, bad_words_ids_tensor, stop_words_ids_tensor,
                request_input_len_tensor, request_output_len_tensor,
                embedding_bias_tensor
            ])
            responses.append(inference_response)

        # You should return a list of pb_utils.InferenceResponse. Length
        # of this list must match the length of `requests` list.
        return responses

    def finalize(self):
        """`finalize` is called only once when the model is being unloaded.
        Implementing `finalize` function is optional. This function allows
        the model to perform any necessary clean ups before exit.
        """
        print('Cleaning up...')

    def _create_request(self, query):
        """
            query : batch string (2D numpy array)
        """
        start_ids = [
            np.array(
                self.tokenizer.encode(
                    s[0].decode(),
                    add_special_tokens=self.add_special_tokens)).astype(int)
            for s in query
        ]
        start_lengths = np.array([[len(ids)] for ids in start_ids]).astype(int)

        max_len = 0
        for seq in start_ids:
            max_len = max(max_len, seq.shape[0])
        start_ids = np.stack([
            np.pad(seq, (0, max_len - seq.shape[0]),
                   'constant',
                   constant_values=(0, self.pad_id)) for seq in start_ids
        ])

        return start_ids, start_lengths

    def _to_word_list_format(self, word_lists: List[List[str | bytes]]):
        '''
        word_lists format:
            len(word_lists) == batch_size
            word_lists[i] means the words associated to batch item i. A "word" may actually be any string. Like "lorem" or "lorem ipsum".
        '''
        assert self.tokenizer != None, "need to set tokenizer"

        if word_lists is None:
            # Return an empty array of shape (1,2,0)
            return np.empty([1, 2, 0], dtype="int32")

        flat_ids = []
        offsets = []
        for word_list in word_lists:
            item_flat_ids = []
            item_offsets = []

            for word in word_list:
                if isinstance(word, bytes):
                    word = word.decode()

                ids = self.tokenizer.encode(word, add_special_tokens=False)
                if len(ids) == 0:
                    continue

                item_flat_ids += ids
                item_offsets.append(len(ids))

            flat_ids.append(np.array(item_flat_ids))
            offsets.append(np.cumsum(np.array(item_offsets)))

        pad_to = max(1, max(len(ids) for ids in flat_ids))

        for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
            flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)),
                                 constant_values=0)
            offsets[i] = np.pad(offs, (0, pad_to - len(offs)),
                                constant_values=-1)

        return np.array([flat_ids, offsets], dtype="int32").transpose(
            (1, 0, 2))

    def _get_embedding_bias(self, embedding_bias_words, embedding_bias_weights,
                            bias_dtype):

        assert self.tokenizer != None, "need to set tokenizer"

        if embedding_bias_words is None or embedding_bias_weights is None:
            return np.empty([1, 0], dtype=self.embedding_bias_weights_dtype)

        batch_embedding_bias = []
        for words, weights in zip(embedding_bias_words,
                                  embedding_bias_weights):

            vocab_size = self.tokenizer.vocab_size
            embedding_bias = [0.] * vocab_size

            assert len(words) == len(
                weights
            ), "Embedding bias words must have same dimension as embedding bias weights"

            for word, weight in zip(words, weights):
                if isinstance(word, bytes):
                    word = word.decode()
                ids = self.tokenizer.encode(word)

                if len(ids) == 0:
                    continue

                for id in ids:
                    embedding_bias[id] += weight

            batch_embedding_bias.append(np.array(embedding_bias))

        return np.array(batch_embedding_bias, dtype=bias_dtype)