yessenzhar's picture
add smaller files
a83b588
raw
history blame
8.17 kB
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import numpy as np
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer, LlamaTokenizer, T5Tokenizer
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# Parse model configs
model_config = json.loads(args['model_config'])
tokenizer_dir = model_config['parameters']['tokenizer_dir'][
'string_value']
tokenizer_type = model_config['parameters']['tokenizer_type'][
'string_value']
if tokenizer_type == 't5':
self.tokenizer = T5Tokenizer(vocab_file=tokenizer_dir,
padding_side='left')
elif tokenizer_type == 'auto':
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
padding_side='left')
elif tokenizer_type == 'llama':
self.tokenizer = LlamaTokenizer.from_pretrained(
tokenizer_dir, legacy=False, padding_side='left')
else:
raise AttributeError(
f'Unexpected tokenizer type: {tokenizer_type}')
self.tokenizer.pad_token = self.tokenizer.eos_token
self._init_token_map()
# Parse model output configs
output_config = pb_utils.get_output_config_by_name(
model_config, "OUTPUT")
# Convert Triton types to numpy types
self.output_dtype = pb_utils.triton_string_to_numpy(
output_config['data_type'])
output_lens_config = pb_utils.get_output_config_by_name(
model_config, "OUTPUT_LENS")
# Convert Triton types to numpy types
self.output_lens_dtype = pb_utils.triton_string_to_numpy(
output_lens_config['data_type'])
def _init_token_map(self):
v = self.tokenizer.get_vocab()
self.token_map = [None] * len(v)
for k, val in v.items():
self.token_map[val] = k
for i in range(len(v)):
if self.token_map[i] is None:
print("error %s" % i)
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
# Every Python backend must iterate over everyone of the requests
# and create a pb_utils.InferenceResponse for each of them.
for idx, request in enumerate(requests):
# Get input tensors
tokens_batch = pb_utils.get_input_tensor_by_name(
request, 'TOKENS_BATCH').as_numpy()
# Reshape Input
# tokens_batch = tokens_batch.reshape([-1, tokens_batch.shape[0]])
# tokens_batch = tokens_batch.T
# Postprocessing output data.
outputs, output_lens = self._postprocessing(tokens_batch)
# Create output tensors. You need pb_utils.Tensor
# objects to create pb_utils.InferenceResponse.
output_tensor = pb_utils.Tensor(
'OUTPUT',
np.array(outputs).astype(self.output_dtype))
output_lens_tensor = pb_utils.Tensor(
'OUTPUT_LENS',
np.array(output_lens).astype(self.output_lens_dtype))
# Create InferenceResponse. You can set an error here in case
# there was a problem with handling this inference request.
# Below is an example of how you can set errors in inference
# response:
#
# pb_utils.InferenceResponse(
# output_tensors=..., TritonError("An error occurred"))
inference_response = pb_utils.InferenceResponse(
output_tensors=[output_tensor, output_lens_tensor])
responses.append(inference_response)
# You should return a list of pb_utils.InferenceResponse. Length
# of this list must match the length of `requests` list.
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')
def _single_token_decode(self, token):
st = self.token_map[token]
if st[0] == '▁':
return " " + st[1:]
return st
def _postprocessing(self, tokens_batch):
outputs = []
output_lens = []
for beam_tokens in tokens_batch:
total_len = 0
for tokens in beam_tokens:
if len(tokens) == 1:
output = self._single_token_decode(tokens[0])
else:
output = self.tokenizer.decode(tokens)
print(output)
outputs.append(output.encode('utf8'))
total_len += len(tokens)
output_lens.append(total_len)
return outputs, output_lens