File size: 2,013 Bytes
7a360e1 a174bbb 7a360e1 9de9507 7a360e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# Alireo-400M Model Card π
## Model Description
Alireo-400M is a lightweight yet powerful Italian language model with 400M parameters, designed to provide efficient natural language processing capabilities while maintaining a smaller footprint compared to larger models.
## Key Features β¨
* **Architecture**: Transformer-based language model ποΈ
* **Parameters**: 400M π
* **Context Window**: 8K tokens πͺ
* **Training Data**: Curated Italian text corpus (books, articles, web content) π
* **Model Size**: ~800MB πΎ
## Performance π
Despite its compact size, Alireo-400M demonstrates impressive performance:
* **Benchmark Results**: Outperforms Qwen 0.5B across multiple benchmarks π
* **Language Understanding**: Maintains high accuracy in Italian language understanding tasks π―
* **Speed**: Efficient inference speed due to optimized architecture β‘
## Limitations β οΈ
* Limited context window compared to larger models
* May struggle with highly specialized technical content
* Performance may vary on dialectal variations
* Not suitable for multilingual tasks
## Hardware Requirements π»
* **Minimum RAM**: 2GB
* **Recommended RAM**: 4GB
* **GPU**: Optional, but recommended for faster inference
* **Disk Space**: ~1GB (including model and dependencies)
## Usage Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("montebovi/alireo-400m")
tokenizer = AutoTokenizer.from_pretrained("montebovi/alireo-400m")
# Example text
text = "L'intelligenza artificiale sta"
# Tokenize and generate
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
## License π
Apache 2.0
## Citation π
```bibtex
@software{alireo2024,
author = {[Michele Montebovi]},
title = {Alireo-400M: A Lightweight Italian Language Model},
year = {2024},
}
``` |