--- language: - it - en license: llama3 library_name: transformers datasets: - DeepMount00/llm_ita_ultra --- ## Model Architecture - **Base Model:** [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) - **Specialization:** Italian Language ## Evaluation For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard). Here's a breakdown of the performance metrics: | Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |:----------------------------|:----------------------|:----------------|:---------------------|:--------| | **Accuracy Normalized** | 0.6518 | 0.5441 | 0.5729 | 0.5896 | --- ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") MODEL_NAME = "DeepMount00/Llama-3-8b-Ita" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval() model.to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def generate_answer(prompt): messages = [ {"role": "user", "content": prompt}, ] model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True, temperature=0.001) decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return decoded[0] prompt = "Come si apre un file json in python?" answer = generate_answer(prompt) print(answer) ``` --- ## Developer [Michele Montebovi]