File size: 1,202 Bytes
3a31a5b ba13b5a 0af1b4a 9bd5173 040e104 3a31a5b ba13b5a 22bc6be ba13b5a 040e104 22bc6be 0af1b4a 9bd5173 ba13b5a 22bc6be ba13b5a 040e104 ba13b5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import torch
from typing import Dict, List, Any
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# check for GPU
device = 0 if torch.cuda.is_available() else -1
class EndpointHandler:
def __init__(self, path=""):
# load the model
tokenizer = AutoTokenizer.from_pretrained(path)
# model = AutoModel.from_pretrained(path, low_cpu_mem_usage=True)
# model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
# create inference pipeline
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
prediction = self.pipeline(inputs, **parameters)
else:
prediction = self.pipeline(inputs)
# postprocess the prediction
return prediction
|