File size: 3,213 Bytes
2add0ff 9078be2 2add0ff 9078be2 2add0ff 6ef97c4 2add0ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
tags:
- chat
datasets:
- NewEden/CivitAI-SD-Prompts
License: agpl-3.0
Language:
- En
Pipeline_tag: text-generation
Base_model: NewEden/Qwen-1.5B-Claude
Tags:
- Chat
---
This is the first in a line of models dedicated to creating Stable-Diffusion prompts when given a character appearance, This has been finetuned ontop of
[NewEden/Qwen-1.5B-Claude](https://huggingface.co/NewEden/Qwen-1.5B-Claude).
## Prompting
Model has been tuned with the Alapaca formatting. A typical input would look like this:
```
### Instruction:
Create a prompt for Stable Diffusion based on the information below.
### Input:
Rae has short has dark brown hair and brown eyes, She is commonly seen wearing her Royal Academy uniform, which consists of a red jacket with gold lines, a white ruffled necktie, a red bow tie with an attached blue gem, and a long black skirt with white lines. Along with her uniform, she wears black leggings and brown shoes.
### Response:
```
## System Prompting
I would highly recommend using the following system prompt for this model.
```
Create a prompt for Stable Diffusion based on the information below.
```
## Axolotl Config
<details><summary>See Axolotl Trainer config</summary>
```yaml
base_model: NewEden/Qwen-1.5B-Claude
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: civit-slop-combined.jsonl
type: alpaca
conversation: mpt-30b-instruct
chat_template: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/sd-prompter
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: SDprompt-qwen
wandb_entity:
wandb_watch:
wandb_name: qwen1.5b-2
wandb_log_model:
gradient_accumulation_steps: 64
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 1
debug:
#deepspeed: deepspeed_configs/zero2.json
#deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
#fsdp:
#fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
```
</details><br>
## Credits
Thank you to [Kubernetes Bad](https://huggingface.co/kubernetes-bad)
## Training
The training was done for 2 epochs. I used 2 x [RTX 6000s](https://www.nvidia.com/en-us/design-visualization/rtx-6000/) GPUs graciously provided by [Kubernetes Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model. |