--- library_name: transformers license: gpl datasets: - DenyTranDFW/SEC_10K_FSNoNDS_Zip language: - en base_model: - openai-community/gpt2 --- # Model Card for gpt2-next-tag-prediction import torch from transformers import AutoModelForCausalLM, GPT2Tokenizer #LOAD THE MODEL model = AutoModelForCausalLM.from_pretrained('DenyTranDFW/gpt2-next-tag-prediction') #AFTER REVIEWING THE CODE, IT LOOKS LIKE I FORGOT TO UPLOAD THE TOKENIZER, #PLEASE USE GPT2'S TOKENIZER tokenizer = GPT2Tokenizer.from_pretrained('gpt2') prompt = "AssetsCurrent" input_ids = tokenizer.encode(prompt, return_tensors='pt') with torch.no_grad():     outputs = model(input_ids)     predictions = outputs.logits[:, -1, :] predicted_index = predictions.argmax(-1).item() predicted_word = tokenizer.decode(predicted_index) print(f"Prompt: {prompt}") print(f"Predicted next word: {predicted_word}") ![predict.png](https://cdn-uploads.huggingface.co/production/uploads/664fd752780b951aa03abade/q2_BnitOyncxHvs7-fERT.png)