File size: 2,318 Bytes
2747b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-small.en
tags:
- generated_from_trainer
datasets:
- Dev372/Medical_STT_Dataset_1.1
metrics:
- wer
model-index:
- name: English Whisper Model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Medical
type: Dev372/Medical_STT_Dataset_1.1
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 4.889121133936445
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# English Whisper Model
This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the Medical dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0952
- Wer: 4.8891
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 18
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.7956 | 0.2825 | 100 | 0.7275 | 8.0048 |
| 0.5277 | 0.5650 | 200 | 0.5046 | 6.2706 |
| 0.2247 | 0.8475 | 300 | 0.1916 | 6.1988 |
| 0.0883 | 1.1299 | 400 | 0.1251 | 5.5880 |
| 0.0735 | 1.4124 | 500 | 0.1173 | 5.0883 |
| 0.0752 | 1.6949 | 600 | 0.1080 | 4.9120 |
| 0.0689 | 1.9774 | 700 | 0.0975 | 4.5233 |
| 0.0401 | 2.2599 | 800 | 0.0992 | 4.4613 |
| 0.0364 | 2.5424 | 900 | 0.0966 | 4.7291 |
| 0.0345 | 2.8249 | 1000 | 0.0952 | 4.8891 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|