--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.0 metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1.0 args: 'split: test' metrics: - name: Wer type: wer value: 6.200650255457501 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1018 - Wer: 6.2007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0554 | 5.0505 | 500 | 0.0921 | 5.2253 | | 0.0044 | 10.1010 | 1000 | 0.0996 | 5.8059 | | 0.0015 | 15.1515 | 1500 | 0.1018 | 6.2007 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1