--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1.1 args: 'split: test' metrics: - name: Wer type: wer value: 6.5482216924132075 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1566 - Wer: 6.5482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.8857 | 0.1554 | 55 | 1.6694 | 13.1520 | | 1.3264 | 0.3107 | 110 | 1.0577 | 11.8358 | | 0.9159 | 0.4661 | 165 | 0.8809 | 10.3857 | | 0.8292 | 0.6215 | 220 | 0.7654 | 9.8893 | | 0.641 | 0.7768 | 275 | 0.6364 | 9.2557 | | 0.5445 | 0.9322 | 330 | 0.4931 | 8.6417 | | 0.4072 | 1.0876 | 385 | 0.3397 | 8.2759 | | 0.2378 | 1.2429 | 440 | 0.2414 | 8.1322 | | 0.2109 | 1.3983 | 495 | 0.2116 | 7.6684 | | 0.1641 | 1.5537 | 550 | 0.1940 | 7.6423 | | 0.1498 | 1.7090 | 605 | 0.1819 | 7.1198 | | 0.1445 | 1.8644 | 660 | 0.1752 | 6.8095 | | 0.1349 | 2.0198 | 715 | 0.1679 | 6.7181 | | 0.1032 | 2.1751 | 770 | 0.1661 | 6.7344 | | 0.0898 | 2.3305 | 825 | 0.1632 | 6.8291 | | 0.1032 | 2.4859 | 880 | 0.1606 | 6.7278 | | 0.0845 | 2.6412 | 935 | 0.1592 | 6.7083 | | 0.0958 | 2.7966 | 990 | 0.1578 | 6.5743 | | 0.097 | 2.9520 | 1045 | 0.1570 | 6.5515 | | 0.0689 | 3.1073 | 1100 | 0.1566 | 6.5482 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1