File size: 2,637 Bytes
f676fd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- generated_from_trainer
datasets:
- Dev372/Medical_STT_Dataset_1.1
metrics:
- wer
model-index:
- name: English Whisper Model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Medical
type: Dev372/Medical_STT_Dataset_1.1
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 6.554753584375714
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# English Whisper Model
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1509
- Wer: 6.5548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 18
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.3263 | 0.2825 | 100 | 1.1474 | 12.0219 |
| 0.8292 | 0.5650 | 200 | 0.8086 | 9.9840 |
| 0.5971 | 0.8475 | 300 | 0.5736 | 9.0597 |
| 0.2888 | 1.1299 | 400 | 0.3038 | 8.2465 |
| 0.172 | 1.4124 | 500 | 0.2112 | 7.5835 |
| 0.1499 | 1.6949 | 600 | 0.1839 | 7.0773 |
| 0.1347 | 1.9774 | 700 | 0.1693 | 6.6691 |
| 0.0977 | 2.2599 | 800 | 0.1650 | 6.7834 |
| 0.0966 | 2.5424 | 900 | 0.1578 | 7.0381 |
| 0.0877 | 2.8249 | 1000 | 0.1542 | 6.6462 |
| 0.0587 | 3.1073 | 1100 | 0.1539 | 6.5090 |
| 0.0642 | 3.3898 | 1200 | 0.1531 | 6.5646 |
| 0.0597 | 3.6723 | 1300 | 0.1518 | 6.5090 |
| 0.0754 | 3.9548 | 1400 | 0.1511 | 6.5254 |
| 0.0506 | 4.2373 | 1500 | 0.1509 | 6.5548 |
### Framework versions
- Transformers 4.43.2
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|