Devarshi commited on
Commit
cca1b97
1 Parent(s): 2227750

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
- value: 0.9613120269133726
28
  - name: F1
29
  type: f1
30
- value: 0.9613120269133726
31
  - name: Recall
32
  type: recall
33
- value: 0.9613120269133726
34
  - name: Precision
35
  type: precision
36
- value: 0.9613120269133726
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.1093
47
- - Accuracy: 0.9613
48
- - F1: 0.9613
49
- - Recall: 0.9613
50
- - Precision: 0.9613
51
 
52
  ## Model description
53
 
@@ -75,16 +75,17 @@ The following hyperparameters were used during training:
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
  - lr_scheduler_warmup_ratio: 0.1
78
- - num_epochs: 4
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
84
- | 0.4369 | 0.99 | 83 | 0.2500 | 0.9092 | 0.9092 | 0.9092 | 0.9092 |
85
- | 0.3777 | 1.99 | 166 | 0.1763 | 0.9302 | 0.9302 | 0.9302 | 0.9302 |
86
- | 0.2684 | 2.99 | 249 | 0.1215 | 0.9512 | 0.9512 | 0.9512 | 0.9512 |
87
- | 0.2363 | 3.99 | 332 | 0.1093 | 0.9613 | 0.9613 | 0.9613 | 0.9613 |
 
88
 
89
 
90
  ### Framework versions
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.9646761984861227
28
  - name: F1
29
  type: f1
30
+ value: 0.9646761984861227
31
  - name: Recall
32
  type: recall
33
+ value: 0.9646761984861227
34
  - name: Precision
35
  type: precision
36
+ value: 0.9646761984861227
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.1012
47
+ - Accuracy: 0.9647
48
+ - F1: 0.9647
49
+ - Recall: 0.9647
50
+ - Precision: 0.9647
51
 
52
  ## Model description
53
 
 
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
  - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 5
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
84
+ | 0.4856 | 0.99 | 83 | 0.3771 | 0.8444 | 0.8444 | 0.8444 | 0.8444 |
85
+ | 0.3495 | 1.99 | 166 | 0.2608 | 0.8949 | 0.8949 | 0.8949 | 0.8949 |
86
+ | 0.252 | 2.99 | 249 | 0.1445 | 0.9487 | 0.9487 | 0.9487 | 0.9487 |
87
+ | 0.2364 | 3.99 | 332 | 0.1029 | 0.9588 | 0.9588 | 0.9588 | 0.9588 |
88
+ | 0.2178 | 4.99 | 415 | 0.1012 | 0.9647 | 0.9647 | 0.9647 | 0.9647 |
89
 
90
 
91
  ### Framework versions