File size: 33,108 Bytes
61e6a6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
import datetime
import json
import os
import time
from threading import Lock, Thread
import numpy as np
import triton_python_backend_utils as pb_utils
from torch import from_numpy
import tensorrt_llm.bindings.executor as trtllm
def get_input_tensor_by_name(request, name):
tensor = pb_utils.get_input_tensor_by_name(request, name)
if tensor is None:
return None
return tensor.as_numpy()
def get_input_scalar_by_name(request, name):
tensor = get_input_tensor_by_name(request, name)
if tensor is None:
return None
if tensor.size != 1:
raise pb_utils.TritonModelException(
f"Expected a single value for {name}")
return tensor.item()
def read_parameter_as_type(value, name, pytype=str):
if value == "":
return None
if value.startswith("${") and value.endswith("}"):
return None
if pytype is bool:
return value.lower() in ["1", "true"]
try:
result = pytype(value)
return result
except:
pb_utils.Logger.log_warning(
f"Could not read parameter '{name}' with value '{value}', will use default."
)
return None
def get_parameter(model_config, name, pytype=str):
if name not in model_config['parameters']:
return None
return read_parameter_as_type(
model_config['parameters'][name]['string_value'], name, pytype)
def convert_word_list(word_list):
if word_list is None:
return None
word_list = word_list.tolist()
if len(word_list) == 0 or len(word_list[0]) != 2:
raise pb_utils.TritonModelException(f"Invalid format for word list.")
words, indices = word_list[0]
result = []
current_index = 0
for i in indices:
if i == -1:
continue
if i > len(words):
raise pb_utils.TritonModelException(
f"Invalid format for word list.")
current_word = []
while current_index < i:
current_word.append(words[current_index])
current_index += 1
result.append(current_word)
return result
def parse_medusa_choices(medusa_choices):
if medusa_choices is None:
return None
try:
result = json.loads(
"[" + medusa_choices.replace("{", "[").replace("}", "]") + "]")
assert isinstance(result, list) and len(result) > 0
assert all([isinstance(x, list) for x in result])
assert all([isinstance(y, int) for x in result for y in x])
except Exception:
raise pb_utils.TritonModelException(
"Invalid format for medusa_choices")
return result
def get_sampling_config_from_request(request):
kwargs = {}
kwargs['beam_width'] = get_input_scalar_by_name(request, 'beam_width') or 1
kwargs['top_k'] = get_input_scalar_by_name(request, 'runtime_top_k')
kwargs['top_p'] = get_input_scalar_by_name(request, 'runtime_top_p')
kwargs['top_p'] = None if kwargs['top_p'] is None or kwargs[
'top_p'] <= 0 else kwargs['top_p']
kwargs['random_seed'] = get_input_scalar_by_name(request, 'random_seed')
kwargs['temperature'] = get_input_scalar_by_name(request, 'temperature')
kwargs['min_length'] = get_input_scalar_by_name(request, 'min_length')
kwargs['repetition_penalty'] = get_input_scalar_by_name(
request, 'repetition_penalty')
kwargs['presence_penalty'] = get_input_scalar_by_name(
request, 'presence_penalty')
kwargs['frequency_penalty'] = get_input_scalar_by_name(
request, 'frequency_penalty')
kwargs['length_penalty'] = get_input_scalar_by_name(request, 'len_penalty')
kwargs['top_p_min'] = get_input_scalar_by_name(request,
'runtime_top_p_min')
kwargs['top_p_reset_ids'] = get_input_scalar_by_name(
request, 'runtime_top_p_reset_ids')
kwargs['top_p_decay'] = get_input_scalar_by_name(request,
'runtime_top_p_decay')
kwargs['beam_search_diversity_rate'] = get_input_scalar_by_name(
request, 'beam_search_diversity_rate')
kwargs['early_stopping'] = get_input_scalar_by_name(
request, 'early_stopping')
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.SamplingConfig(**kwargs)
def get_output_config_from_request(request, exclude_input_from_output):
kwargs = {}
kwargs["return_log_probs"] = get_input_scalar_by_name(
request, 'return_log_probs')
kwargs["return_context_logits"] = get_input_scalar_by_name(
request, 'return_context_logits')
kwargs["return_generation_logits"] = get_input_scalar_by_name(
request, 'return_generation_logits')
kwargs["exclude_input_from_output"] = exclude_input_from_output
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.OutputConfig(**kwargs)
def get_external_draft_tokens_config_from_request(request):
kwargs = {}
draft_input_ids = get_input_tensor_by_name(request, 'draft_input_ids')
if draft_input_ids is not None:
kwargs['tokens'] = draft_input_ids.tolist()
draft_logits = get_input_tensor_by_name(request, 'draft_logits')
if draft_logits is not None:
kwargs['logits'] = from_numpy(draft_logits)
kwargs['acceptance_threshold'] = get_input_scalar_by_name(
request, 'draft_acceptance_threshold')
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.ExternalDraftTokensConfig(**kwargs)
return None
def get_prompt_tuning_config_from_request(request):
# prompt_vocab_size is unused by executor.
kwargs = {}
prompt_embedding_table = get_input_tensor_by_name(
request, 'prompt_embedding_table')
if prompt_embedding_table is not None:
kwargs["embedding_table"] = from_numpy(prompt_embedding_table)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.PromptTuningConfig(**kwargs)
return None
def get_lora_config_from_request(request):
kwargs = {}
kwargs["task_id"] = get_input_scalar_by_name(request, 'lora_task_id')
lora_weights = get_input_tensor_by_name(request, 'lora_weights')
if lora_weights is not None:
kwargs["weights"] = from_numpy(lora_weights)
lora_config = get_input_tensor_by_name(request, 'lora_config')
if lora_config is not None:
kwargs["config"] = from_numpy(lora_config)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.LoraConfig(**kwargs)
return None
def convert_request(request, exclude_input_from_output, decoupled):
inputs = {}
input_token_ids = get_input_tensor_by_name(request, 'input_ids')
if input_token_ids is None:
raise pb_utils.TritonModelException(
"A value is required for input_ids")
input_token_ids = input_token_ids.tolist()
if len(input_token_ids) == 0:
raise pb_utils.TritonModelException(f"Invalid format for input_ids")
inputs['input_token_ids'] = input_token_ids[0]
# input_lengths is not not used by executor.
inputs['max_new_tokens'] = get_input_scalar_by_name(
request, 'request_output_len')
if inputs['max_new_tokens'] is None:
raise pb_utils.TritonModelException(
"A value is required for request_output_len")
inputs['streaming'] = get_input_scalar_by_name(request, 'streaming')
if inputs['streaming'] and not decoupled:
raise pb_utils.TritonModelException(
"Streaming is only supported in decoupled mode.")
inputs['end_id'] = get_input_scalar_by_name(request, 'end_id')
inputs['pad_id'] = get_input_scalar_by_name(request, 'pad_id')
inputs['stop_words'] = convert_word_list(
get_input_tensor_by_name(request, 'stop_words_list'))
inputs['bad_words'] = convert_word_list(
get_input_tensor_by_name(request, 'bad_words_list'))
embedding_bias = get_input_tensor_by_name(request, 'embedding_bias')
if embedding_bias is not None and embedding_bias.size != 0:
inputs['embedding_bias'] = from_numpy(embedding_bias).squeeze()
sampling_config = get_sampling_config_from_request(request)
output_config = get_output_config_from_request(request,
exclude_input_from_output)
external_draft_tokens_config = get_external_draft_tokens_config_from_request(
request)
prompt_tuning_config = get_prompt_tuning_config_from_request(request)
lora_config = get_lora_config_from_request(request)
return trtllm.Request(
**inputs,
sampling_config=sampling_config,
output_config=output_config,
external_draft_tokens_config=external_draft_tokens_config,
prompt_tuning_config=prompt_tuning_config,
lora_config=lora_config,
)
def convert_response(response):
if response.has_error():
return pb_utils.InferenceResponse(output_tensors=[],
error=pb_utils.TritonError(
response.error_msg)), True
result = response.result
beam_lengths = np.expand_dims(
np.array([len(beam) for beam in result.output_token_ids], np.int32), 0)
max_beam_length = max([len(beam) for beam in result.output_token_ids])
output_ids = np.full((1, len(result.output_token_ids), max_beam_length),
-1, np.int32)
for idx, beam in enumerate(result.output_token_ids):
output_ids[0, idx, :len(beam)] = beam
output_tensors = [
pb_utils.Tensor("output_ids", output_ids),
pb_utils.Tensor("sequence_length", beam_lengths),
]
output_tensors.append(
pb_utils.Tensor(
"cum_log_probs",
np.expand_dims(np.array(result.cum_log_probs, np.float32), 0)
if result.cum_log_probs is not None else np.zeros(
(1, 1), np.float32)))
output_tensors.append(
pb_utils.Tensor(
"output_log_probs",
np.expand_dims(np.array(result.log_probs, np.float32), 0) if
result.log_probs is not None else np.zeros((1, 1, 1), np.float32)))
output_tensors.append(
pb_utils.Tensor(
"context_logits",
np.expand_dims(np.array(result.context_logits, np.float32), 0)
if result.context_logits is not None else np.zeros(
(1, 1, 1), np.float32)))
output_tensors.append(
pb_utils.Tensor(
"generation_logits",
np.expand_dims(np.array(result.generation_logits, np.float32), 0)
if result.generation_logits is not None else np.zeros(
(1, 1, 1, 1), np.float32)))
return pb_utils.InferenceResponse(output_tensors), result.is_final
def convert_scheduler_policy(batch_scheduler_policy: str):
if batch_scheduler_policy.lower() == "max_utilization":
return trtllm.CapacitySchedulerPolicy.MAX_UTILIZATION
elif batch_scheduler_policy.lower() == "guaranteed_no_evict":
return trtllm.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT
raise pb_utils.TritonModelException(
f"batch_scheduler_policy value of '{batch_scheduler_policy}' is not supported."
)
def convert_batching_type(gpt_model_type: str):
if gpt_model_type is None:
return None
if gpt_model_type.lower(
) == "inflight_fused_batching" or gpt_model_type.lower(
) == "inflight_batching":
return trtllm.BatchingType.INFLIGHT
elif gpt_model_type.lower() == "v1":
return trtllm.BatchingType.STATIC
raise pb_utils.TritonModelException(
f"gpt_model_type value of '{gpt_model_type}' is not supported.")
def convert_decoding_mode(decoding_mode: str):
if decoding_mode is None:
return None
elif decoding_mode == "auto":
return trtllm.DecodingMode.Auto()
elif decoding_mode == "top_k":
return trtllm.DecodingMode.TopK()
elif decoding_mode == "top_p":
return trtllm.DecodingMode.TopP()
elif decoding_mode == "top_k_top_p":
return trtllm.DecodingMode.TopKTopP()
elif decoding_mode == "beam_search":
return trtllm.DecodingMode.BeamSearch()
elif decoding_mode == "medusa":
return trtllm.DecodingMode.Medusa()
raise pb_utils.TritonModelException(
f"decoding_mode value of '{decoding_mode}' is not supported.")
def convert_timestamp_to_seconds(timestamp: str):
return int(
datetime.datetime.strptime(timestamp, "%m-%d-%Y %H:%M:%S").timestamp())
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def get_scheduler_config(self, model_config):
batch_scheduler_policy = get_parameter(model_config,
"batch_scheduler_policy")
if batch_scheduler_policy is None:
return trtllm.SchedulerConfig()
return trtllm.SchedulerConfig(
convert_scheduler_policy(batch_scheduler_policy))
def get_kv_cache_config(self, model_config):
kwargs = {
"enable_block_reuse":
get_parameter(model_config, "enable_kv_cache_reuse", bool),
"max_tokens":
get_parameter(model_config, "max_tokens_in_paged_kv_cache", int),
"sink_token_length":
get_parameter(model_config, "sink_token_length", int),
"max_attention_window":
get_parameter(model_config, "max_attention_window_size", int),
"free_gpu_memory_fraction":
get_parameter(model_config, "kv_cache_free_gpu_mem_fraction",
float),
"host_cache_size":
get_parameter(model_config, "kv_cache_host_memory_bytes", int),
"onboard_blocks":
get_parameter(model_config, "kv_cache_onboard_blocks", bool),
}
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.KvCacheConfig(**kwargs)
def get_parallel_config(self, model_config):
kwargs = {}
gpu_device_ids = get_parameter(model_config, "gpu_device_ids")
if gpu_device_ids:
kwargs["device_ids"] = [int(x) for x in gpu_device_ids.split(",")]
self.use_orchestrator_mode = os.environ.get("TRTLLM_ORCHESTRATOR",
"0") == "1"
if self.use_orchestrator_mode:
kwargs[
"communication_mode"] = trtllm.CommunicationMode.ORCHESTRATOR
worker_path = get_parameter(model_config, "worker_path")
if worker_path is not None:
raise pb_utils.TritonModelException(
"worker_path parameter is specified, but this is no longer supported. Please specify executor_worker_path instead to specify the location of the trtllmExecutorWorker executable."
)
executor_worker_path = get_parameter(model_config,
"executor_worker_path")
kwargs["orchestrator_config"] = trtllm.OrchestratorConfig(
True, executor_worker_path)
if len(kwargs) > 0:
return trtllm.ParallelConfig(**kwargs)
return None
def get_peft_cache_config(self, model_config):
kwargs = {
"optimal_adapter_size":
get_parameter(model_config, "lora_cache_optimal_adapter_size",
int),
"max_adapter_size":
get_parameter(model_config, "lora_cache_max_adapter_size", int),
"device_cache_percent":
get_parameter(model_config, "lora_cache_gpu_memory_fraction",
float),
"host_cache_size":
get_parameter(model_config, "lora_cache_host_memory_bytes", int),
}
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.PeftCacheConfig(**kwargs)
def get_decoding_config(self, model_config):
kwargs = {
"medusa_choices":
parse_medusa_choices(get_parameter(model_config,
"medusa_choices")),
"decoding_mode":
convert_decoding_mode(get_parameter(model_config,
"decoding_mode")),
}
print(kwargs)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.DecodingConfig(**kwargs)
def get_executor_config(self, model_config):
kwargs = {
"max_beam_width":
get_parameter(model_config, "max_beam_width", int),
"scheduler_config":
self.get_scheduler_config(model_config),
"kv_cache_config":
self.get_kv_cache_config(model_config),
"enable_chunked_context":
get_parameter(model_config, "enable_chunked_context", bool),
"normalize_log_probs":
get_parameter(model_config, "normalize_log_probs", bool),
"batching_type":
convert_batching_type(get_parameter(model_config,
"gpt_model_type")),
"parallel_config":
self.get_parallel_config(model_config),
"peft_cache_config":
self.get_peft_cache_config(model_config),
"decoding_config":
self.get_decoding_config(model_config),
}
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.ExecutorConfig(**kwargs)
def create_metrics(self, model: str, version: str, is_v1_model: bool):
self.request_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_request_metrics",
description="TRT LLM request metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
self.runtime_memory_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_runtime_memory_metrics",
description="TRT LLM runtime memory metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
self.kv_cache_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_kv_cache_block_metrics",
description="TRT LLM KV cache block metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
model_type = "v1" if is_v1_model else "inflight_batcher"
self.model_type_metric_family = pb_utils.MetricFamily(
name=f"nv_trt_llm_{model_type}_metrics",
description=f"TRT LLM {model_type}-specific metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
self.general_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_general_metrics",
description="General TRT LLM metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
common_labels = {"model": model, "version": version}
self.all_metrics = {
# Request metrics
"num_active_requests":
self.request_metric_family.Metric(labels={
"request_type": "active",
**common_labels
}),
"max_num_active_requests":
self.request_metric_family.Metric(labels={
"request_type": "max",
**common_labels
}),
"num_scheduled_requests":
self.request_metric_family.Metric(labels={
"request_type": "scheduled",
**common_labels
}),
"num_context_requests":
self.request_metric_family.Metric(labels={
"request_type": "context",
**common_labels
}),
# Runtime metrics
"cpu_mem_usage":
self.runtime_memory_metric_family.Metric(labels={
"memory_type": "cpu",
**common_labels
}),
"gpu_mem_usage":
self.runtime_memory_metric_family.Metric(labels={
"memory_type": "gpu",
**common_labels
}),
"pinned_mem_usage":
self.runtime_memory_metric_family.Metric(labels={
"memory_type": "pinned",
**common_labels
}),
# KV cache metrics
"max_num_blocks":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "max",
**common_labels
}),
"free_num_blocks":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "free",
**common_labels
}),
"used_num_blocks":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "used",
**common_labels
}),
"tokens_per_block":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "tokens_per",
**common_labels
}),
# General metrics
"timestamp":
self.general_metric_family.Metric(labels={
"general_type": "timestamp",
**common_labels
}),
"iter":
self.general_metric_family.Metric(labels={
"general_type": "iteration_counter",
**common_labels
}),
}
if is_v1_model:
self.all_metrics.update({
"num_ctx_tokens":
self.model_type_metric_family.Metric(labels={
"v1_specific_metric": "total_context_tokens",
**common_labels
}),
"num_gen_tokens":
self.model_type_metric_family.Metric(
labels={
"v1_specific_metric": "total_generation_tokens",
**common_labels
}),
"empty_gen_slots":
self.model_type_metric_family.Metric(
labels={
"v1_specific_metric": "empty_generation_slots",
**common_labels
}),
})
else:
self.all_metrics.update({
"num_ctx_tokens":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric":
"total_context_tokens",
**common_labels
}),
"num_gen_requests":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric":
"generation_requests",
**common_labels
}),
"micro_batch_id":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric": "micro_batch_id",
**common_labels
}),
"num_paused_requests":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric": "paused_requests",
**common_labels
}),
})
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
model_config = json.loads(args['model_config'])
gpt_model_path = get_parameter(model_config, "gpt_model_path")
if get_parameter(model_config, "enable_trt_overlap", bool):
raise pb_utils.TritonModelException(
f"enable_trt_overlap=true is not supported.")
self.exclude_input_from_output = get_parameter(
model_config, "exclude_input_in_output", bool)
executor_config = self.get_executor_config(model_config)
self.executor = trtllm.Executor(gpt_model_path,
trtllm.ModelType.DECODER_ONLY,
executor_config)
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(
model_config)
self.cancellation_check_period_ms = get_parameter(
model_config, "cancellation_check_period_ms", int) or 100
self.stats_check_period_ms = get_parameter(
model_config, "stats_check_period_ms", int) or 100
if not self.decoupled:
raise pb_utils.TritonModelException(
"Please enable decoupled transaction policy in the model configuration to serve this model"
)
self.create_metrics(args["model_name"],
args["model_version"],
is_v1_model=executor_config.batching_type ==
trtllm.BatchingType.STATIC)
self.triton_id_to_req_id = {}
self.req_id_to_response_sender = {}
self.lock = Lock()
self.running = False
self.awaiter_thread = Thread(target=self.awaiter_loop)
self.cancellation_thread = Thread(target=self.cancellation_loop)
self.metrics_thread = Thread(target=self.metrics_loop)
if self.executor.can_enqueue_requests():
self.running = True
self.awaiter_thread.start()
self.cancellation_thread.start()
self.metrics_thread.start()
else:
# In leader mode, worker ranks will wait here until leader is done.
self.executor.shutdown()
def handle_stop_request(self, triton_id, response_sender):
if triton_id is None or triton_id == "":
response_sender.send(
pb_utils.InferenceResponse(error=pb_utils.TritonError(
"A request id must be provided for request cancellation")),
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
return
if triton_id in self.triton_id_to_req_id:
req_id = self.triton_id_to_req_id[triton_id]
self.executor.cancel_request(req_id)
response_sender.send(
pb_utils.InferenceResponse(),
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
if not self.executor.can_enqueue_requests():
return
# Convert to executor requests.
triton_requests = []
executor_requests = []
for request in requests:
response_sender = request.get_response_sender()
if get_input_scalar_by_name(request, 'stop'):
self.handle_stop_request(request.request_id(), response_sender)
else:
try:
converted = convert_request(request,
self.exclude_input_from_output,
self.decoupled)
except Exception as e:
response_sender.send(
pb_utils.InferenceResponse(error=pb_utils.TritonError(
f"An error occurred when processing the input values for request id {request.request_id()}, the error was '{e}'"
)),
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
else:
triton_requests.append(request)
executor_requests.append(converted)
with self.lock:
request_ids = self.executor.enqueue_requests(executor_requests)
for req_id, request in zip(request_ids, triton_requests):
triton_id = request.request_id()
self.req_id_to_response_sender[
req_id] = triton_id, request.get_response_sender()
self.triton_id_to_req_id[triton_id] = req_id
return None
def awaiter_loop(self):
"""Gets responses from executor and returns the results."""
while self.running:
for response in self.executor.await_responses(
timeout=datetime.timedelta(milliseconds=1)):
req_id = response.request_id
with self.lock:
if req_id not in self.req_id_to_response_sender:
continue
triton_id, response_sender = self.req_id_to_response_sender[
req_id]
triton_response, is_final = convert_response(response)
response_sender.send(
triton_response,
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL
if is_final else 0)
if is_final:
with self.lock:
del self.triton_id_to_req_id[triton_id]
del self.req_id_to_response_sender[req_id]
# Remove local reference so response_sender can be cleaned properly.
del response_sender
def cancellation_loop(self):
"""Checks if any pending requests have been cancelled."""
while self.running:
time.sleep(self.cancellation_check_period_ms / 1000.0)
with self.lock:
for req_id, (triton_id, response_sender
) in self.req_id_to_response_sender.items():
if response_sender.is_cancelled():
self.executor.cancel_request(req_id)
# Remove local reference so response_sender can be cleaned properly.
del response_sender
def metrics_loop(self):
"""Updates triton metrics using stats from the executor."""
while self.running:
time.sleep(self.stats_check_period_ms / 1000.0)
for stat in self.executor.get_latest_iteration_stats():
try:
for key, metric in self.all_metrics.items():
value = None
if hasattr(stat, key):
value = getattr(stat, key)
elif stat.kv_cache_stats is not None and hasattr(
stat.kv_cache_stats, key):
value = getattr(stat.kv_cache_stats, key)
elif stat.static_batching_stats is not None and hasattr(
stat.static_batching_stats, key):
value = getattr(stat.static_batching_stats, key)
elif stat.inflight_batching_stats is not None and hasattr(
stat.inflight_batching_stats, key):
value = getattr(stat.inflight_batching_stats, key)
if value is not None:
if key == "timestamp":
value = convert_timestamp_to_seconds(value)
metric.set(value)
else:
pb_utils.Logger.log_warn(
f"Metric \"{key}\" not found.")
except Exception as e:
pb_utils.Logger.log_warn(
f"Error while processing metrics: {e}")
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
if self.executor.can_enqueue_requests():
self.running = False
self.awaiter_thread.join()
self.cancellation_thread.join()
self.metrics_thread.join()
self.executor.shutdown()
|