Dhrumit1314
commited on
Commit
•
aca4b90
1
Parent(s):
15c4cbb
Upload 3 files
Browse files- Facial_Age_and_Gender_Detection.py +207 -0
- age_model_3epochs.h5 +3 -0
- gender_model_3epochs.h5 +3 -0
Facial_Age_and_Gender_Detection.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Thu Feb 29 15:05:30 2024
|
4 |
+
|
5 |
+
@author: Dhrumit Patel
|
6 |
+
"""
|
7 |
+
|
8 |
+
"""
|
9 |
+
Dataset: UTKFace
|
10 |
+
https://www.kaggle.com/datasets/jangedoo/utkface-new?resource=download
|
11 |
+
"""
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import numpy as np
|
15 |
+
import tensorflow as tf
|
16 |
+
import os
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import cv2
|
19 |
+
from keras.models import Sequential, Model, load_model
|
20 |
+
from keras.layers import Conv2D, MaxPool2D, Dense, Dropout, BatchNormalization, Flatten, Input
|
21 |
+
from sklearn.model_selection import train_test_split
|
22 |
+
|
23 |
+
path = 'data/UTKFace'
|
24 |
+
|
25 |
+
images = []
|
26 |
+
age = []
|
27 |
+
gender = []
|
28 |
+
|
29 |
+
for img in os.listdir(path):
|
30 |
+
ages = img.split("_")[0]
|
31 |
+
genders = img.split("_")[1]
|
32 |
+
img = cv2.imread(str(path) + "/" + str(img))
|
33 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
34 |
+
images.append(np.array(img))
|
35 |
+
age.append(np.array(ages))
|
36 |
+
gender.append(np.array(genders))
|
37 |
+
|
38 |
+
images = np.array(images)
|
39 |
+
|
40 |
+
images = images / 255.0
|
41 |
+
age = np.array(age, dtype=np.int64)
|
42 |
+
gender = np.array(gender, dtype=np.int64)
|
43 |
+
|
44 |
+
# np.save('preprocessed_data/images.npy', images)
|
45 |
+
# np.save('preprocessed_data/age.npy', age)
|
46 |
+
# np.save('preprocessed_data/gender.npy', gender)
|
47 |
+
|
48 |
+
# images = np.load('preprocessed_data/images.npy')
|
49 |
+
# age = np.load('preprocessed_data/age.npy')
|
50 |
+
# gender = np.load('preprocessed_data/gender.npy')
|
51 |
+
|
52 |
+
X_train_age, X_test_age, y_train_age, y_test_age = train_test_split(images, age, random_state=42)
|
53 |
+
X_train_gender, X_test_gender, y_train_gender, y_test_gender = train_test_split(images, gender, random_state=42)
|
54 |
+
|
55 |
+
# Define the model - For Age
|
56 |
+
age_model = Sequential()
|
57 |
+
age_model.add(Conv2D(128, kernel_size=3, activation='relu', input_shape=(200,200,3)))
|
58 |
+
age_model.add(MaxPool2D(pool_size=3, strides=2))
|
59 |
+
|
60 |
+
age_model.add(Conv2D(128, kernel_size=3, activation='relu'))
|
61 |
+
age_model.add(MaxPool2D(pool_size=3, strides=2))
|
62 |
+
|
63 |
+
age_model.add(Conv2D(256, kernel_size=3, activation='relu'))
|
64 |
+
age_model.add(MaxPool2D(pool_size=3, strides=2))
|
65 |
+
|
66 |
+
age_model.add(Conv2D(512, kernel_size=3, activation='relu'))
|
67 |
+
age_model.add(MaxPool2D(pool_size=3, strides=2))
|
68 |
+
|
69 |
+
age_model.add(Flatten())
|
70 |
+
age_model.add(Dropout(0.2))
|
71 |
+
age_model.add(Dense(512, activation='relu'))
|
72 |
+
|
73 |
+
age_model.add(Dense(1, activation='linear', name='age'))
|
74 |
+
|
75 |
+
age_model.compile(optimizer='adam', loss='mse', metrics=['mae'])
|
76 |
+
|
77 |
+
age_model.summary()
|
78 |
+
|
79 |
+
# TODO: Fit for 10 epochs
|
80 |
+
with tf.device('/CPU:0'):
|
81 |
+
history_age = age_model.fit(X_train_age, y_train_age,
|
82 |
+
epochs=10,
|
83 |
+
validation_data=(X_test_age, y_test_age))
|
84 |
+
|
85 |
+
age_model.save('models/age_model_10epochs.h5')
|
86 |
+
|
87 |
+
# Define the model - For Gender
|
88 |
+
gender_model = Sequential()
|
89 |
+
|
90 |
+
gender_model.add(Conv2D(36, kernel_size=3, activation='relu', input_shape=(200,200,3)))
|
91 |
+
|
92 |
+
gender_model.add(MaxPool2D(pool_size=3, strides=2))
|
93 |
+
gender_model.add(Conv2D(64, kernel_size=3, activation='relu'))
|
94 |
+
gender_model.add(MaxPool2D(pool_size=3, strides=2))
|
95 |
+
|
96 |
+
gender_model.add(Conv2D(128, kernel_size=3, activation='relu'))
|
97 |
+
gender_model.add(MaxPool2D(pool_size=3, strides=2))
|
98 |
+
|
99 |
+
gender_model.add(Conv2D(256, kernel_size=3, activation='relu'))
|
100 |
+
gender_model.add(MaxPool2D(pool_size=3, strides=2))
|
101 |
+
|
102 |
+
gender_model.add(Conv2D(512, kernel_size=3, activation='relu'))
|
103 |
+
gender_model.add(MaxPool2D(pool_size=3, strides=2))
|
104 |
+
|
105 |
+
gender_model.add(Flatten())
|
106 |
+
gender_model.add(Dropout(0.2))
|
107 |
+
gender_model.add(Dense(512, activation='relu'))
|
108 |
+
gender_model.add(Dense(1, activation='sigmoid', name='gender'))
|
109 |
+
|
110 |
+
gender_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
111 |
+
|
112 |
+
gender_model.summary()
|
113 |
+
|
114 |
+
# TODO: Fit for 10 epochs
|
115 |
+
with tf.device('/CPU:0'):
|
116 |
+
history_gender = gender_model.fit(X_train_gender, y_train_gender,
|
117 |
+
epochs=10,
|
118 |
+
validation_data=(X_test_gender, y_test_gender))
|
119 |
+
|
120 |
+
gender_model.save('models/gender_model_10epochs.h5')
|
121 |
+
|
122 |
+
# Plot the training and validation accuracy and loss at each epoch - For Age model
|
123 |
+
loss = history_age.history['loss']
|
124 |
+
val_loss = history_age.history['val_loss']
|
125 |
+
epochs = range(1, len(loss) + 1)
|
126 |
+
plt.plot(epochs, loss, 'y', label='Training loss')
|
127 |
+
plt.plot(epochs, val_loss, 'r', label='Validation loss')
|
128 |
+
plt.title('Training and validation loss for Age model')
|
129 |
+
plt.xlabel('Epochs')
|
130 |
+
plt.ylabel('Loss')
|
131 |
+
plt.legend()
|
132 |
+
plt.show()
|
133 |
+
|
134 |
+
acc = history_age.history['accuracy']
|
135 |
+
val_acc = history_age.history['val_accuracy']
|
136 |
+
plt.plot(epochs, acc, 'y', label='Training Accuracy')
|
137 |
+
plt.plot(epochs, val_acc, 'r', label='Validation Accuracy')
|
138 |
+
plt.title('Training and validation accuracy for Age model')
|
139 |
+
plt.xlabel('Epochs')
|
140 |
+
plt.ylabel('Accuracy')
|
141 |
+
plt.legend()
|
142 |
+
plt.show()
|
143 |
+
|
144 |
+
# Plot the training and validation accuracy and loss at each epoch - For Gender model
|
145 |
+
loss = history_gender.history['loss']
|
146 |
+
val_loss = history_gender.history['val_loss']
|
147 |
+
epochs = range(1, len(loss) + 1)
|
148 |
+
plt.plot(epochs, loss, 'y', label='Training loss')
|
149 |
+
plt.plot(epochs, val_loss, 'r', label='Validation loss')
|
150 |
+
plt.title('Training and validation loss for Gender model')
|
151 |
+
plt.xlabel('Epochs')
|
152 |
+
plt.ylabel('Loss')
|
153 |
+
plt.legend()
|
154 |
+
plt.show()
|
155 |
+
|
156 |
+
acc = history_gender.history['accuracy']
|
157 |
+
val_acc = history_gender.history['val_accuracy']
|
158 |
+
plt.plot(epochs, acc, 'y', label='Training Accuracy')
|
159 |
+
plt.plot(epochs, val_acc, 'r', label='Validation Accuracy')
|
160 |
+
plt.title('Training and validation accuracy for Gender model')
|
161 |
+
plt.xlabel('Epochs')
|
162 |
+
plt.ylabel('Accuracy')
|
163 |
+
plt.legend()
|
164 |
+
plt.show()
|
165 |
+
|
166 |
+
|
167 |
+
# Test the model - Gender Model
|
168 |
+
my_model_gender = load_model('models/gender_model_3epochs.h5')
|
169 |
+
with tf.device('/CPU:0'):
|
170 |
+
predictions = my_model_gender.predict(X_test_gender)
|
171 |
+
y_pred = (predictions >= 0.5).astype(int)[:, 0]
|
172 |
+
|
173 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
174 |
+
import seaborn as sns
|
175 |
+
|
176 |
+
print(f"Accuracy: {accuracy_score(y_true=y_test_gender, y_pred=y_pred)}")
|
177 |
+
|
178 |
+
# Confusion matrix
|
179 |
+
cm = confusion_matrix(y_true=y_test_gender, y_pred=y_pred)
|
180 |
+
sns.heatmap(cm, annot=True, fmt='d')
|
181 |
+
|
182 |
+
# Test the model - Age Model
|
183 |
+
|
184 |
+
# Saving the models to huggingface
|
185 |
+
from transformers import TFAutoModel
|
186 |
+
import tensorflow as tf
|
187 |
+
|
188 |
+
# Load your TensorFlow model from the .h5 file
|
189 |
+
age_model = tf.keras.models.load_model('models/age_model_3epochs.h5')
|
190 |
+
gender_model = tf.keras.models.load_model('models/gender_model_3epochs.h5')
|
191 |
+
|
192 |
+
# Save the model weights
|
193 |
+
age_model.save_weights('age_model_weights.h5')
|
194 |
+
gender_model.save_weights('gender_model_weights.h5')
|
195 |
+
|
196 |
+
# Load the architecture of the Hugging Face model you want to use
|
197 |
+
# For example, if you're using BERT, you would use TFBertModel
|
198 |
+
hf_model_age = TFAutoModel.from_pretrained('bert-base-uncased')
|
199 |
+
hf_model_gender = TFAutoModel.from_pretrained('bert-base-uncased')
|
200 |
+
|
201 |
+
# Load the weights into the Hugging Face model
|
202 |
+
hf_model_age.load_weights('age_model_weights.h5')
|
203 |
+
hf_model_gender.load_weights('gender_model_weights.h5')
|
204 |
+
|
205 |
+
# Save the Hugging Face model
|
206 |
+
hf_model_age.save_pretrained('hf_age_model')
|
207 |
+
hf_model_gender.save_pretrained('hf_gender_model')
|
age_model_3epochs.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62190e322612ef0631205e2d1b9a97ef0f328ee807385cddca465b3d680cd07d
|
3 |
+
size 274399416
|
gender_model_3epochs.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bb2821e39ea29aaaa4f2ad8d0d06a0cc10282e3de90d81b566012341e558695
|
3 |
+
size 47248096
|