Dhrumit1314
commited on
Commit
•
a39e224
1
Parent(s):
4ce79e8
Upload 5 files
Browse files- .gitattributes +1 -0
- FoodVision_CV.py +359 -0
- helper_functions.py +302 -0
- saved_model.pb +3 -0
- variables.data-00000-of-00001 +3 -0
- variables.index +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
FoodVision_CV.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Thu Feb 8 15:27:13 2024
|
4 |
+
|
5 |
+
@author: Dhrumit Patel
|
6 |
+
"""
|
7 |
+
|
8 |
+
"""
|
9 |
+
Get helper functions
|
10 |
+
"""
|
11 |
+
# Import series of helper functions
|
12 |
+
from helper_functions import create_tensorboard_callback, plot_loss_curves, compare_historys
|
13 |
+
|
14 |
+
"""
|
15 |
+
Use TensorFlow Datasets(TFDS) to download data
|
16 |
+
"""
|
17 |
+
# Get TensorFlow Datasets
|
18 |
+
import tensorflow_datasets as tfds
|
19 |
+
|
20 |
+
# List all the available datasets
|
21 |
+
datasets_list = tfds.list_builders() # Get all available datasets in TFDS
|
22 |
+
print("food101" in datasets_list) # Is our target dataset in the list of TFDS datasets?
|
23 |
+
|
24 |
+
# Load in the data
|
25 |
+
(train_data, test_data), ds_info = tfds.load(name="food101",
|
26 |
+
split=["train", "validation"],
|
27 |
+
shuffle_files=True, # Data gets returned in tuple format (data, label)
|
28 |
+
with_info=True)
|
29 |
+
# Features of Food101 from TFDS
|
30 |
+
ds_info.features
|
31 |
+
|
32 |
+
# Get the class names
|
33 |
+
class_names = ds_info.features["label"].names
|
34 |
+
class_names[:10]
|
35 |
+
|
36 |
+
# Take one sample of the train data
|
37 |
+
train_one_sample = train_data.take(1) # samples are in format (image_tensor, label)
|
38 |
+
# What does one sample of our training data look like?
|
39 |
+
train_one_sample
|
40 |
+
|
41 |
+
# Output info about our training samples
|
42 |
+
for sample in train_one_sample:
|
43 |
+
image, label = sample["image"], sample["label"]
|
44 |
+
print(f"""
|
45 |
+
Image shape: {image.shape}
|
46 |
+
Image datatype: {image.dtype}
|
47 |
+
Target class from Food101 (tensor form): {label}
|
48 |
+
Class name (str form): {class_names[label.numpy()]}
|
49 |
+
""")
|
50 |
+
|
51 |
+
# What does our image tensor from TFDS's Food101 look like?
|
52 |
+
import tensorflow as tf
|
53 |
+
image
|
54 |
+
tf.reduce_min(image), tf.reduce_max(image)
|
55 |
+
|
56 |
+
"""
|
57 |
+
Plot an image from TensorFlow Datasets
|
58 |
+
"""
|
59 |
+
# Plot an image tensor
|
60 |
+
import matplotlib.pyplot as plt
|
61 |
+
plt.imshow(image)
|
62 |
+
plt.title(class_names[label.numpy()]) # Add title to verify the label is associated to right image
|
63 |
+
plt.axis(False)
|
64 |
+
|
65 |
+
(image, label)
|
66 |
+
|
67 |
+
# Make a function for preprocessing images
|
68 |
+
def preprocess_img(image, label, img_shape=224):
|
69 |
+
"""
|
70 |
+
Converts image datatype from uint8 -> float32 and reshapes
|
71 |
+
image to [img_shape, img_shape, color_channels]
|
72 |
+
"""
|
73 |
+
image = tf.image.resize(image, [img_shape, img_shape]) # reshape target image
|
74 |
+
# image = image/255. # scale image values (not required for EfficientNet models from tf.keras.applications)
|
75 |
+
return tf.cast(image, dtype=tf.float32), label # return a tuple of float32 image and a label tuple
|
76 |
+
|
77 |
+
# Preprocess a single sample image and check the outputs
|
78 |
+
preprocessed_img = preprocess_img(image, label)[0]
|
79 |
+
print(f"Image before preprocessing:\n {image[:2]}..., \n Shape: {image.shape},\nDatatype: {image.dtype}\n")
|
80 |
+
print(f"Image after preprocessing:]n {preprocessed_img[:2]}..., \n Shape: {preprocessed_img.shape}, \nDatatype: {preprocessed_img.dtype}")
|
81 |
+
|
82 |
+
"""
|
83 |
+
Batch and preprare datasets
|
84 |
+
|
85 |
+
We are now going to make our data input pipeline run really fast.
|
86 |
+
"""
|
87 |
+
# Map preprocessing function to training data (and parallelize)
|
88 |
+
train_data = train_data.map(map_func=lambda sample: preprocess_img(sample['image'], sample['label']), num_parallel_calls=tf.data.AUTOTUNE)
|
89 |
+
# Shuffle train_data and turned it into batches and prefetch it (load it faster)
|
90 |
+
train_data = train_data.shuffle(buffer_size=1000).batch(batch_size=32).prefetch(buffer_size=tf.data.AUTOTUNE)
|
91 |
+
|
92 |
+
# Map preprocessing function to test data
|
93 |
+
test_data = test_data.map(map_func=lambda sample: preprocess_img(sample['image'], sample['label']), num_parallel_calls=tf.data.AUTOTUNE)
|
94 |
+
# Turn the test data into batches (don't need to shuffle the test data)
|
95 |
+
test_data = test_data.batch(batch_size=32).prefetch(tf.data.AUTOTUNE)
|
96 |
+
|
97 |
+
train_data, test_data
|
98 |
+
|
99 |
+
"""
|
100 |
+
Create modelling callbacks
|
101 |
+
|
102 |
+
We are going to create a couple of callbacks to help us while our model trains:
|
103 |
+
1. TensorBoard callback to log training results (so we can visualize them later if need be)
|
104 |
+
2. ModelCheckpoint callback to save our model's progress after feature extraction.
|
105 |
+
"""
|
106 |
+
# Create tensorboard callback (import from helper_functions.py)
|
107 |
+
from helper_functions import create_tensorboard_callback
|
108 |
+
|
109 |
+
# Create a ModelCheckpoint callback to save a model's progress during training
|
110 |
+
checkpoint_path = "model_checkpoints/cp.ckpt"
|
111 |
+
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
|
112 |
+
monitor="val_acc",
|
113 |
+
save_best_only=True,
|
114 |
+
save_weights_only=True,
|
115 |
+
verbose=1)
|
116 |
+
|
117 |
+
# Turn on mixed precision training
|
118 |
+
from tensorflow.keras import mixed_precision
|
119 |
+
mixed_precision.set_global_policy("mixed_float16") # Set global data policy to mixed precision
|
120 |
+
mixed_precision.global_policy()
|
121 |
+
|
122 |
+
"""
|
123 |
+
Build feature extraction model
|
124 |
+
"""
|
125 |
+
from tensorflow.keras import layers
|
126 |
+
from tensorflow.keras.layers.experimental import preprocessing
|
127 |
+
|
128 |
+
# Create base model
|
129 |
+
input_shape = (224, 224, 3)
|
130 |
+
base_model = tf.keras.applications.efficientnet_v2.EfficientNetV2B0(include_top=False)
|
131 |
+
base_model.trainable = False
|
132 |
+
|
133 |
+
# Create functional model
|
134 |
+
inputs = layers.Input(shape=input_shape, name="input_layer")
|
135 |
+
# Note: EfficientNetV2B0 models have rescaling built-in but if your model doesn't you can have a layer like below
|
136 |
+
# x = preprocessing.Rescaling(1./255)(x)
|
137 |
+
x = base_model(inputs, training=False) # make sure layers which should be in inference mode only
|
138 |
+
x = layers.GlobalAveragePooling2D(name="global_pooling_layer")(x)
|
139 |
+
outputs = layers.Dense(len(class_names), activation="softmax", dtype=tf.float32, name="softmax_float32")(x) # This will be converted to float32
|
140 |
+
|
141 |
+
model = tf.keras.Model(inputs, outputs)
|
142 |
+
|
143 |
+
# Compile the model
|
144 |
+
model.compile(loss="sparse_categorical_crossentropy", # The labels are in integer form
|
145 |
+
optimizer=tf.keras.optimizers.Adam(),
|
146 |
+
metrics=["accuracy"])
|
147 |
+
|
148 |
+
model.summary()
|
149 |
+
|
150 |
+
# Check the dtype_policy attributes of layers in our model
|
151 |
+
for layer in model.layers:
|
152 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
|
153 |
+
|
154 |
+
|
155 |
+
# Check the dtype_policy attributes for the base_model layer
|
156 |
+
for layer in model.layers[1].layers:
|
157 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
|
158 |
+
|
159 |
+
# OR
|
160 |
+
|
161 |
+
for layer in base_model.layers:
|
162 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
|
163 |
+
|
164 |
+
# Fit the feature extraction model with callbacks
|
165 |
+
history_101_food_classes_feature_extract = model.fit(train_data,
|
166 |
+
epochs=10,
|
167 |
+
steps_per_epoch=len(train_data),
|
168 |
+
validation_data=test_data,
|
169 |
+
validation_steps=int(0.15 * len(test_data)),
|
170 |
+
callbacks=[create_tensorboard_callback(dir_name="training_logs", experiment_name="efficientnetb0_101_classes_all_data_feature_extract"), model_checkpoint])
|
171 |
+
|
172 |
+
|
173 |
+
# Evaluate the model on the whole test data
|
174 |
+
results_feature_extract_model = model.evaluate(test_data)
|
175 |
+
results_feature_extract_model
|
176 |
+
|
177 |
+
|
178 |
+
# 1. Create a function to recreate the original model
|
179 |
+
def create_model():
|
180 |
+
# Create base model
|
181 |
+
input_shape = (224, 224, 3)
|
182 |
+
base_model = tf.keras.applications.efficientnet.EfficientNetB0(include_top=False)
|
183 |
+
base_model.trainable = False # freeze base model layers
|
184 |
+
|
185 |
+
# Create Functional model
|
186 |
+
inputs = layers.Input(shape=input_shape, name="input_layer")
|
187 |
+
# Note: EfficientNetBX models have rescaling built-in but if your model didn't you could have a layer like below
|
188 |
+
# x = layers.Rescaling(1./255)(x)
|
189 |
+
x = base_model(inputs, training=False) # set base_model to inference mode only
|
190 |
+
x = layers.GlobalAveragePooling2D(name="pooling_layer")(x)
|
191 |
+
x = layers.Dense(len(class_names))(x) # want one output neuron per class
|
192 |
+
# Separate activation of output layer so we can output float32 activations
|
193 |
+
outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_float32")(x)
|
194 |
+
model = tf.keras.Model(inputs, outputs)
|
195 |
+
|
196 |
+
return model
|
197 |
+
|
198 |
+
# 2. Create and compile a new version of the original model (new weights)
|
199 |
+
created_model = create_model()
|
200 |
+
created_model.compile(loss="sparse_categorical_crossentropy",
|
201 |
+
optimizer=tf.keras.optimizers.Adam(),
|
202 |
+
metrics=["accuracy"])
|
203 |
+
|
204 |
+
# 3. Load the saved weights
|
205 |
+
created_model.load_weights(checkpoint_path)
|
206 |
+
|
207 |
+
# 4. Evaluate the model with loaded weights
|
208 |
+
results_created_model_with_loaded_weights = created_model.evaluate(test_data)
|
209 |
+
|
210 |
+
# 5. Loaded checkpoint weights should return very similar results to checkpoint weights prior to saving
|
211 |
+
import numpy as np
|
212 |
+
assert np.isclose(results_feature_extract_model, results_created_model_with_loaded_weights).all(), "Loaded weights results are not close to original model." # check if all elements in array are close
|
213 |
+
|
214 |
+
# Check the layers in the base model and see what dtype policy they're using
|
215 |
+
for layer in created_model.layers[1].layers[:20]: # check only the first 20 layers to save printing space
|
216 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
|
217 |
+
|
218 |
+
# Save model locally (if you're using Google Colab, your saved model will Colab instance terminates)
|
219 |
+
save_dir = "07_efficientnetb0_feature_extract_model_mixed_precision"
|
220 |
+
model.save(save_dir)
|
221 |
+
|
222 |
+
# Load model previously saved above
|
223 |
+
loaded_saved_model = tf.keras.models.load_model(save_dir)
|
224 |
+
|
225 |
+
# Load model previously saved above
|
226 |
+
loaded_saved_model = tf.keras.models.load_model(save_dir)
|
227 |
+
|
228 |
+
|
229 |
+
# Check the layers in the base model and see what dtype policy they're using
|
230 |
+
for layer in loaded_saved_model.layers[1].layers[:20]: # check only the first 20 layers to save output space
|
231 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
|
232 |
+
|
233 |
+
results_loaded_saved_model = loaded_saved_model.evaluate(test_data)
|
234 |
+
results_loaded_saved_model
|
235 |
+
|
236 |
+
# The loaded model's results should equal (or at least be very close) to the model's results prior to saving
|
237 |
+
import numpy as np
|
238 |
+
assert np.isclose(results_feature_extract_model, results_loaded_saved_model).all()
|
239 |
+
|
240 |
+
|
241 |
+
"""
|
242 |
+
Optional
|
243 |
+
"""
|
244 |
+
# Download and unzip the saved model from Google Storage - https://drive.google.com/file/d/1-4BsHQyo3NIBGzlgqZgJNC5_3eIGcbVb/view?usp=sharing
|
245 |
+
|
246 |
+
# Unzip the SavedModel downloaded from Google Storage
|
247 |
+
# !mkdir downloaded_gs_model # create new dir to store downloaded feature extraction model
|
248 |
+
# !unzip 07_efficientnetb0_feature_extract_model_mixed_precision.zip -d downloaded_gs_model
|
249 |
+
|
250 |
+
# Load and evaluate downloaded GS model
|
251 |
+
loaded_gs_model = tf.keras.models.load_model("downloaded_gs_model/07_efficientnetb0_feature_extract_model_mixed_precision")
|
252 |
+
|
253 |
+
# Get a summary of our downloaded model
|
254 |
+
loaded_gs_model.summary()
|
255 |
+
|
256 |
+
# How does the loaded model perform?
|
257 |
+
results_loaded_gs_model = loaded_gs_model.evaluate(test_data)
|
258 |
+
results_loaded_gs_model
|
259 |
+
|
260 |
+
# Are any of the layers in our model frozen?
|
261 |
+
for layer in loaded_gs_model.layers:
|
262 |
+
layer.trainable = True # set all layers to trainable
|
263 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy) # make sure loaded model is using mixed precision dtype_policy ("mixed_float16")
|
264 |
+
|
265 |
+
|
266 |
+
# Check the layers in the base model and see what dtype policy they're using
|
267 |
+
for layer in loaded_gs_model.layers[1].layers[:20]:
|
268 |
+
print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
|
269 |
+
|
270 |
+
# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs
|
271 |
+
early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss", # watch the val loss metric
|
272 |
+
patience=3) # if val loss decreases for 3 epochs in a row, stop training
|
273 |
+
|
274 |
+
# Create ModelCheckpoint callback to save best model during fine-tuning
|
275 |
+
checkpoint_path = "fine_tune_checkpoints/"
|
276 |
+
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
|
277 |
+
save_best_only=True,
|
278 |
+
monitor="val_loss")
|
279 |
+
# Creating learning rate reduction callback
|
280 |
+
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor="val_loss",
|
281 |
+
factor=0.2, # multiply the learning rate by 0.2 (reduce by 5x)
|
282 |
+
patience=2,
|
283 |
+
verbose=1, # print out when learning rate goes down
|
284 |
+
min_lr=1e-7)
|
285 |
+
|
286 |
+
# Compile the model
|
287 |
+
loaded_gs_model.compile(loss="sparse_categorical_crossentropy", # sparse_categorical_crossentropy for labels that are *not* one-hot
|
288 |
+
optimizer=tf.keras.optimizers.Adam(0.0001), # 10x lower learning rate than the default
|
289 |
+
metrics=["accuracy"])
|
290 |
+
|
291 |
+
|
292 |
+
# Start to fine-tune (all layers)
|
293 |
+
history_101_food_classes_all_data_fine_tune = loaded_gs_model.fit(train_data,
|
294 |
+
epochs=100, # fine-tune for a maximum of 100 epochs
|
295 |
+
steps_per_epoch=len(train_data),
|
296 |
+
validation_data=test_data,
|
297 |
+
validation_steps=int(0.15 * len(test_data)), # validation during training on 15% of test data
|
298 |
+
callbacks=[create_tensorboard_callback("training_logs", "efficientb0_101_classes_all_data_fine_tuning"), # track the model training logs
|
299 |
+
model_checkpoint, # save only the best model during training
|
300 |
+
early_stopping, # stop model after X epochs of no improvements
|
301 |
+
reduce_lr]) # reduce the learning rate after X epochs of no improvements
|
302 |
+
|
303 |
+
# Save model locally (note: if you're using Google Colab and you save your model locally, it will be deleted when your Google Colab session ends)
|
304 |
+
loaded_gs_model.save("07_efficientnetb0_fine_tuned_101_classes_mixed_precision")
|
305 |
+
|
306 |
+
|
307 |
+
"""
|
308 |
+
Optional
|
309 |
+
"""
|
310 |
+
# Download and evaluate fine-tuned model from Google Storage - https://drive.google.com/file/d/1owx3maxBae1P2I2yQHd-ru_4M7RyoGpB/view?usp=sharing
|
311 |
+
|
312 |
+
# Unzip fine-tuned model
|
313 |
+
# !mkdir downloaded_fine_tuned_gs_model # create separate directory for fine-tuned model downloaded from Google Storage
|
314 |
+
# !unzip 07_efficientnetb0_fine_tuned_101_classes_mixed_precision -d downloaded_fine_tuned_gs_model
|
315 |
+
|
316 |
+
# Load in fine-tuned model and evaluate
|
317 |
+
loaded_fine_tuned_gs_model = tf.keras.models.load_model("downloaded_fine_tuned_gs_model/07_efficientnetb0_fine_tuned_101_classes_mixed_precision")
|
318 |
+
|
319 |
+
# Get a model summary
|
320 |
+
loaded_fine_tuned_gs_model.summary()
|
321 |
+
|
322 |
+
# Note: Even if you're loading in the model from Google Storage, you will still need to load the test_data variable for this cell to work
|
323 |
+
results_downloaded_fine_tuned_gs_model = loaded_fine_tuned_gs_model.evaluate(test_data)
|
324 |
+
results_downloaded_fine_tuned_gs_model
|
325 |
+
|
326 |
+
"""
|
327 |
+
# Upload experiment results to TensorBoard (uncomment to run)
|
328 |
+
# !tensorboard dev upload --logdir ./training_logs \
|
329 |
+
# --name "Fine-tuning EfficientNetB0 on all Food101 Data" \
|
330 |
+
# --description "Training results for fine-tuning EfficientNetB0 on Food101 Data with learning rate 0.0001" \
|
331 |
+
# --one_shot
|
332 |
+
|
333 |
+
# View past TensorBoard experiments
|
334 |
+
# !tensorboard dev list
|
335 |
+
|
336 |
+
|
337 |
+
# Delete past TensorBoard experiments
|
338 |
+
# !tensorboard dev delete --experiment_id YOUR_EXPERIMENT_ID
|
339 |
+
|
340 |
+
# Example
|
341 |
+
# !tensorboard dev delete --experiment_id OAE6KXizQZKQxDiqI3cnUQ
|
342 |
+
"""
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
helper_functions.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
|
3 |
+
# Create a function to import an image and resize it to be able to be used with our model
|
4 |
+
def load_and_prep_image(filename, img_shape=224, scale=True):
|
5 |
+
"""
|
6 |
+
Reads in an image from filename, turns it into a tensor and reshapes into
|
7 |
+
(224, 224, 3).
|
8 |
+
|
9 |
+
Parameters
|
10 |
+
----------
|
11 |
+
filename (str): string filename of target image
|
12 |
+
img_shape (int): size to resize target image to, default 224
|
13 |
+
scale (bool): whether to scale pixel values to range(0, 1), default True
|
14 |
+
"""
|
15 |
+
# Read in the image
|
16 |
+
img = tf.io.read_file(filename)
|
17 |
+
# Decode it into a tensor
|
18 |
+
img = tf.image.decode_jpeg(img)
|
19 |
+
# Resize the image
|
20 |
+
img = tf.image.resize(img, [img_shape, img_shape])
|
21 |
+
if scale:
|
22 |
+
# Rescale the image (get all values between 0 and 1)
|
23 |
+
return img/255.
|
24 |
+
else:
|
25 |
+
return img
|
26 |
+
|
27 |
+
# Note: The following confusion matrix code is a remix of Scikit-Learn's
|
28 |
+
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
|
29 |
+
import itertools
|
30 |
+
import matplotlib.pyplot as plt
|
31 |
+
import numpy as np
|
32 |
+
from sklearn.metrics import confusion_matrix
|
33 |
+
|
34 |
+
# Our function needs a different name to sklearn's plot_confusion_matrix
|
35 |
+
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
|
36 |
+
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
|
37 |
+
|
38 |
+
If classes is passed, confusion matrix will be labelled, if not, integer class values
|
39 |
+
will be used.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
y_true: Array of truth labels (must be same shape as y_pred).
|
43 |
+
y_pred: Array of predicted labels (must be same shape as y_true).
|
44 |
+
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
|
45 |
+
figsize: Size of output figure (default=(10, 10)).
|
46 |
+
text_size: Size of output figure text (default=15).
|
47 |
+
norm: normalize values or not (default=False).
|
48 |
+
savefig: save confusion matrix to file (default=False).
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
A labelled confusion matrix plot comparing y_true and y_pred.
|
52 |
+
|
53 |
+
Example usage:
|
54 |
+
make_confusion_matrix(y_true=test_labels, # ground truth test labels
|
55 |
+
y_pred=y_preds, # predicted labels
|
56 |
+
classes=class_names, # array of class label names
|
57 |
+
figsize=(15, 15),
|
58 |
+
text_size=10)
|
59 |
+
"""
|
60 |
+
# Create the confustion matrix
|
61 |
+
cm = confusion_matrix(y_true, y_pred)
|
62 |
+
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
|
63 |
+
n_classes = cm.shape[0] # find the number of classes we're dealing with
|
64 |
+
|
65 |
+
# Plot the figure and make it pretty
|
66 |
+
fig, ax = plt.subplots(figsize=figsize)
|
67 |
+
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
|
68 |
+
fig.colorbar(cax)
|
69 |
+
|
70 |
+
# Are there a list of classes?
|
71 |
+
if classes:
|
72 |
+
labels = classes
|
73 |
+
else:
|
74 |
+
labels = np.arange(cm.shape[0])
|
75 |
+
|
76 |
+
# Label the axes
|
77 |
+
ax.set(title="Confusion Matrix",
|
78 |
+
xlabel="Predicted label",
|
79 |
+
ylabel="True label",
|
80 |
+
xticks=np.arange(n_classes), # create enough axis slots for each class
|
81 |
+
yticks=np.arange(n_classes),
|
82 |
+
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
|
83 |
+
yticklabels=labels)
|
84 |
+
|
85 |
+
# Make x-axis labels appear on bottom
|
86 |
+
ax.xaxis.set_label_position("bottom")
|
87 |
+
ax.xaxis.tick_bottom()
|
88 |
+
|
89 |
+
# Set the threshold for different colors
|
90 |
+
threshold = (cm.max() + cm.min()) / 2.
|
91 |
+
|
92 |
+
# Plot the text on each cell
|
93 |
+
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
|
94 |
+
if norm:
|
95 |
+
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
|
96 |
+
horizontalalignment="center",
|
97 |
+
color="white" if cm[i, j] > threshold else "black",
|
98 |
+
size=text_size)
|
99 |
+
else:
|
100 |
+
plt.text(j, i, f"{cm[i, j]}",
|
101 |
+
horizontalalignment="center",
|
102 |
+
color="white" if cm[i, j] > threshold else "black",
|
103 |
+
size=text_size)
|
104 |
+
|
105 |
+
# Save the figure to the current working directory
|
106 |
+
if savefig:
|
107 |
+
fig.savefig("confusion_matrix.png")
|
108 |
+
|
109 |
+
# Make a function to predict on images and plot them (works with multi-class)
|
110 |
+
def pred_and_plot(model, filename, class_names):
|
111 |
+
"""
|
112 |
+
Imports an image located at filename, makes a prediction on it with
|
113 |
+
a trained model and plots the image with the predicted class as the title.
|
114 |
+
"""
|
115 |
+
# Import the target image and preprocess it
|
116 |
+
img = load_and_prep_image(filename)
|
117 |
+
|
118 |
+
# Make a prediction
|
119 |
+
pred = model.predict(tf.expand_dims(img, axis=0))
|
120 |
+
|
121 |
+
# Get the predicted class
|
122 |
+
if len(pred[0]) > 1: # check for multi-class
|
123 |
+
pred_class = class_names[pred.argmax()] # if more than one output, take the max
|
124 |
+
else:
|
125 |
+
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
|
126 |
+
|
127 |
+
# Plot the image and predicted class
|
128 |
+
plt.imshow(img)
|
129 |
+
plt.title(f"Prediction: {pred_class}")
|
130 |
+
plt.axis(False);
|
131 |
+
|
132 |
+
import datetime
|
133 |
+
|
134 |
+
def create_tensorboard_callback(dir_name, experiment_name):
|
135 |
+
"""
|
136 |
+
Creates a TensorBoard callback instance to store log files.
|
137 |
+
|
138 |
+
Stores log files with the filepath:
|
139 |
+
"dir_name/experiment_name/current_datetime/"
|
140 |
+
|
141 |
+
Args:
|
142 |
+
dir_name: target directory to store TensorBoard log files
|
143 |
+
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
|
144 |
+
"""
|
145 |
+
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
146 |
+
tensorboard_callback = tf.keras.callbacks.TensorBoard(
|
147 |
+
log_dir=log_dir
|
148 |
+
)
|
149 |
+
print(f"Saving TensorBoard log files to: {log_dir}")
|
150 |
+
return tensorboard_callback
|
151 |
+
|
152 |
+
# Plot the validation and training data separately
|
153 |
+
import matplotlib.pyplot as plt
|
154 |
+
|
155 |
+
def plot_loss_curves(history):
|
156 |
+
"""
|
157 |
+
Returns separate loss curves for training and validation metrics.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
|
161 |
+
"""
|
162 |
+
loss = history.history['loss']
|
163 |
+
val_loss = history.history['val_loss']
|
164 |
+
|
165 |
+
accuracy = history.history['accuracy']
|
166 |
+
val_accuracy = history.history['val_accuracy']
|
167 |
+
|
168 |
+
epochs = range(len(history.history['loss']))
|
169 |
+
|
170 |
+
# Plot loss
|
171 |
+
plt.plot(epochs, loss, label='training_loss')
|
172 |
+
plt.plot(epochs, val_loss, label='val_loss')
|
173 |
+
plt.title('Loss')
|
174 |
+
plt.xlabel('Epochs')
|
175 |
+
plt.legend()
|
176 |
+
|
177 |
+
# Plot accuracy
|
178 |
+
plt.figure()
|
179 |
+
plt.plot(epochs, accuracy, label='training_accuracy')
|
180 |
+
plt.plot(epochs, val_accuracy, label='val_accuracy')
|
181 |
+
plt.title('Accuracy')
|
182 |
+
plt.xlabel('Epochs')
|
183 |
+
plt.legend();
|
184 |
+
|
185 |
+
def compare_historys(original_history, new_history, initial_epochs=5):
|
186 |
+
"""
|
187 |
+
Compares two TensorFlow model History objects.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
original_history: History object from original model (before new_history)
|
191 |
+
new_history: History object from continued model training (after original_history)
|
192 |
+
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Get original history measurements
|
196 |
+
acc = original_history.history["accuracy"]
|
197 |
+
loss = original_history.history["loss"]
|
198 |
+
|
199 |
+
val_acc = original_history.history["val_accuracy"]
|
200 |
+
val_loss = original_history.history["val_loss"]
|
201 |
+
|
202 |
+
# Combine original history with new history
|
203 |
+
total_acc = acc + new_history.history["accuracy"]
|
204 |
+
total_loss = loss + new_history.history["loss"]
|
205 |
+
|
206 |
+
total_val_acc = val_acc + new_history.history["val_accuracy"]
|
207 |
+
total_val_loss = val_loss + new_history.history["val_loss"]
|
208 |
+
|
209 |
+
# Make plots
|
210 |
+
plt.figure(figsize=(8, 8))
|
211 |
+
plt.subplot(2, 1, 1)
|
212 |
+
plt.plot(total_acc, label='Training Accuracy')
|
213 |
+
plt.plot(total_val_acc, label='Validation Accuracy')
|
214 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
215 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
216 |
+
plt.legend(loc='lower right')
|
217 |
+
plt.title('Training and Validation Accuracy')
|
218 |
+
|
219 |
+
plt.subplot(2, 1, 2)
|
220 |
+
plt.plot(total_loss, label='Training Loss')
|
221 |
+
plt.plot(total_val_loss, label='Validation Loss')
|
222 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
223 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
224 |
+
plt.legend(loc='upper right')
|
225 |
+
plt.title('Training and Validation Loss')
|
226 |
+
plt.xlabel('epoch')
|
227 |
+
plt.show()
|
228 |
+
|
229 |
+
# Create function to unzip a zipfile into current working directory
|
230 |
+
# (since we're going to be downloading and unzipping a few files)
|
231 |
+
import zipfile
|
232 |
+
|
233 |
+
def unzip_data(filename):
|
234 |
+
"""
|
235 |
+
Unzips filename into the current working directory.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
filename (str): a filepath to a target zip folder to be unzipped.
|
239 |
+
"""
|
240 |
+
zip_ref = zipfile.ZipFile(filename, "r")
|
241 |
+
zip_ref.extractall()
|
242 |
+
zip_ref.close()
|
243 |
+
|
244 |
+
|
245 |
+
# Download and unzip file
|
246 |
+
import zipfile
|
247 |
+
import requests
|
248 |
+
import os
|
249 |
+
|
250 |
+
def download_and_unzip(url, target_folder):
|
251 |
+
# Download the file from url and save it
|
252 |
+
filename = os.path.join(target_folder, os.path.basename(url))
|
253 |
+
with open(filename, 'wb') as f:
|
254 |
+
r = requests.get(url)
|
255 |
+
f.write(r.content)
|
256 |
+
|
257 |
+
# Unzip the downloaded file
|
258 |
+
with zipfile.ZipFile(filename, 'r') as zip_ref:
|
259 |
+
zip_ref.extractall(target_folder)
|
260 |
+
|
261 |
+
# Walk through an image classification directory and find out how many files (images)
|
262 |
+
# are in each subdirectory.
|
263 |
+
import os
|
264 |
+
|
265 |
+
def walk_through_dir(dir_path):
|
266 |
+
"""
|
267 |
+
Walks through dir_path returning its contents.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
dir_path (str): target directory
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
A print out of:
|
274 |
+
number of subdiretories in dir_path
|
275 |
+
number of images (files) in each subdirectory
|
276 |
+
name of each subdirectory
|
277 |
+
"""
|
278 |
+
for dirpath, dirnames, filenames in os.walk(dir_path):
|
279 |
+
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
|
280 |
+
|
281 |
+
# Function to evaluate: accuracy, precision, recall, f1-score
|
282 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
283 |
+
|
284 |
+
def calculate_results(y_true, y_pred):
|
285 |
+
"""
|
286 |
+
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
y_true: true labels in the form of a 1D array
|
290 |
+
y_pred: predicted labels in the form of a 1D array
|
291 |
+
|
292 |
+
Returns a dictionary of accuracy, precision, recall, f1-score.
|
293 |
+
"""
|
294 |
+
# Calculate model accuracy
|
295 |
+
model_accuracy = accuracy_score(y_true, y_pred) * 100
|
296 |
+
# Calculate model precision, recall and f1 score using "weighted average
|
297 |
+
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
|
298 |
+
model_results = {"accuracy": model_accuracy,
|
299 |
+
"precision": model_precision,
|
300 |
+
"recall": model_recall,
|
301 |
+
"f1": model_f1}
|
302 |
+
return model_results
|
saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03f2eab4db7e3bda054c33266e097bb52a70b45ae545ef050b8ce5c0c64a3d84
|
3 |
+
size 7614129
|
variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a31076ec09c49eb2ed725ee21f0303868cbd8fd23646c14433b2476a0bfa9b65
|
3 |
+
size 50017227
|
variables.index
ADDED
Binary file (49.6 kB). View file
|
|