Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 264.42 +/- 38.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa86ef79c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa86ef79ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa86ef79d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa86ef79dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fa86ef79e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fa86ef79ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa86ef79f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa86ef7d040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa86ef7d0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa86ef7d160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa86ef7d1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa86ef7d280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa86ef73ea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673753191241473428, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIYOdD5CGRA/rkTHvHkT2L4zlQU+CBc5vQAAAAAAAAAAQqenvrFysD7i5PI9wHOivuXQ+r1hpA0+AAAAAAAAAABGrRE+3GwTP0BQ1bwU8ai+rfC8PeL4sb0AAAAAAAAAAGZ0GT5S8JW7Q7GntrUxDDTA1QK9IPnMNQAAgD8AAIA/YDgAPvbasz+S5as+N+nyvs34FD6oVeU9AAAAAAAAAADNnpY8n4mouy/kmrypb089or0VPcIbKr4AAIA/AACAP+YTPz3l67c/Ou6tPuSfkL32lEE9woEJPgAAAAAAAAAAAJ/8vXEaDrtWU0o+jelRu9m2Fb3AU8w9AACAPwAAgD8AkKS7wQu2P4A5Ar9auAA/fui+O6X76z0AAAAAAAAAAFpuKb5pYji8KXCZuw8a+LlGybo9bLLLOgAAgD8AAIA/MxN4vRYL5T69WmG8R2Levub88bwdSrY9AAAAAAAAAACtUis+zsyTvFDA7LqK9Dk54E0FvreJIjoAAIA/AACAPyI6h75c27I+3EUPPvRqk77cf5e9wifrPQAAAAAAAAAAYB8lvmmVCLxWCoWzoxajsi7odz02mCw0AACAPwAAgD+AUIA9+mx8Pyd+pT2K7RS/2jyNPStVL70AAAAAAAAAAABZar2cxr8+bCWAPBCwtL4j4RO9KHppPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhC7h0Bt3cUCUhpRSlIwBbJRNEgGMAXSUR0CWXzmrbQC0dX2UKGgGaAloD0MIYajDCrfecECUhpRSlGgVS8RoFkdAll/LJSzgM3V9lChoBmgJaA9DCMJqLGFt+EFAlIaUUpRoFUu4aBZHQJZf+QQtjCp1fZQoaAZoCWgPQwiL/PohduRxQJSGlFKUaBVL02gWR0CWYVw4sEq2dX2UKGgGaAloD0MIZkrrb4kAc0CUhpRSlGgVS/toFkdAlmHrWmP5pXV9lChoBmgJaA9DCFTm5hvRQnBAlIaUUpRoFUvyaBZHQJZiubAk9lp1fZQoaAZoCWgPQwgFFytqsDpwQJSGlFKUaBVL52gWR0CWYulJHy3DdX2UKGgGaAloD0MIoiQk0rZxckCUhpRSlGgVS8ZoFkdAlmM/MGHHm3V9lChoBmgJaA9DCE0wnGvYAnRAlIaUUpRoFUvmaBZHQJZjWUTtb9t1fZQoaAZoCWgPQwgibHh6JXZvQJSGlFKUaBVL7GgWR0CWY2EVWS2ZdX2UKGgGaAloD0MIE5z6QPKQb0CUhpRSlGgVS9xoFkdAlmNyO3lS0nV9lChoBmgJaA9DCGLZzCEp/G5AlIaUUpRoFUvWaBZHQJZjqH8CPp91fZQoaAZoCWgPQwgFGQEVzqZwQJSGlFKUaBVL0GgWR0CWY7EOAiFCdX2UKGgGaAloD0MIQwHbwQiebECUhpRSlGgVS91oFkdAlmPFXNke63V9lChoBmgJaA9DCBeDh2nf9nFAlIaUUpRoFUvsaBZHQJZlHL6k6911fZQoaAZoCWgPQwhuMqoMI1ByQJSGlFKUaBVNGAFoFkdAlmV42S+xnnV9lChoBmgJaA9DCJZ4QNkUDG9AlIaUUpRoFUvqaBZHQJZl71UVBUt1fZQoaAZoCWgPQwimtWlsr4hwQJSGlFKUaBVL+GgWR0CWZha/ATIvdX2UKGgGaAloD0MIBFjk14+ScUCUhpRSlGgVS+xoFkdAlmgBPO6d2HV9lChoBmgJaA9DCCQLmMAtGm9AlIaUUpRoFUvWaBZHQJZoONcW0qp1fZQoaAZoCWgPQwgX78ftFwpvQJSGlFKUaBVL3GgWR0CWaJgvDgqFdX2UKGgGaAloD0MIVTGVfkJeckCUhpRSlGgVTRYBaBZHQJZopz8xbjd1fZQoaAZoCWgPQwico46OKxZyQJSGlFKUaBVL0GgWR0CWaLxIJ7b+dX2UKGgGaAloD0MIOXtntFVeb0CUhpRSlGgVS9hoFkdAlmjQXl8w6HV9lChoBmgJaA9DCC+mme51IHFAlIaUUpRoFUvPaBZHQJZpAjhUBGR1fZQoaAZoCWgPQwj3BIntbvxuQJSGlFKUaBVL3WgWR0CWaR9ph4MXdX2UKGgGaAloD0MIpKXydgQFbkCUhpRSlGgVS9RoFkdAlmk8Co0hvHV9lChoBmgJaA9DCK7yBMLOj3BAlIaUUpRoFUvqaBZHQJZpT0ulGgB1fZQoaAZoCWgPQwhnYroQK4xvQJSGlFKUaBVL3WgWR0CWaVf/m1YydX2UKGgGaAloD0MIZ/FiYcidcECUhpRSlGgVTQIBaBZHQJZro89wFTx1fZQoaAZoCWgPQwiIE5hO65NyQJSGlFKUaBVL9WgWR0CWa6sz2vjfdX2UKGgGaAloD0MItoKmJdYRbkCUhpRSlGgVS+VoFkdAlmu/VEuxr3V9lChoBmgJaA9DCCY2H9eGD3FAlIaUUpRoFUvoaBZHQJZr+SSvC/J1fZQoaAZoCWgPQwiyLm6jAQlxQJSGlFKUaBVLz2gWR0CWbeIoE0SAdX2UKGgGaAloD0MI0uKMYc5bb0CUhpRSlGgVS9FoFkdAlm4glnh86XV9lChoBmgJaA9DCJLPK566WnNAlIaUUpRoFUvsaBZHQJZuVr/Khct1fZQoaAZoCWgPQwhTA83nnBByQJSGlFKUaBVL02gWR0CWbm8ox59mdX2UKGgGaAloD0MIi3CTUeX6cECUhpRSlGgVS/poFkdAlm6IwIt16nV9lChoBmgJaA9DCDATRUhdcW9AlIaUUpRoFUvWaBZHQJZu5AMUh3d1fZQoaAZoCWgPQwjkSj0LQhhwQJSGlFKUaBVL52gWR0CWbx9F4LThdX2UKGgGaAloD0MIyO9t+rN2cECUhpRSlGgVS+1oFkdAlm9pYLb5/XV9lChoBmgJaA9DCD7ONGH78m9AlIaUUpRoFUvpaBZHQJZvdANXo1V1fZQoaAZoCWgPQwgUeZJ0TdByQJSGlFKUaBVNEwFoFkdAlm+yvxH5J3V9lChoBmgJaA9DCHnL1Y/NxXJAlIaUUpRoFU1BAWgWR0CWcPhSLqD9dX2UKGgGaAloD0MII0xRLs2scECUhpRSlGgVS9doFkdAlnFlVcUuc3V9lChoBmgJaA9DCHGqtTALZnFAlIaUUpRoFUvlaBZHQJZx1NHpbEB1fZQoaAZoCWgPQwizs+idSmlwQJSGlFKUaBVL+2gWR0CWcqABDG96dX2UKGgGaAloD0MIVtehmlLIckCUhpRSlGgVTRQBaBZHQJZy9MlC1JF1fZQoaAZoCWgPQwjOUrKcBEVuQJSGlFKUaBVL4GgWR0CWc7Y9Pk7wdX2UKGgGaAloD0MIQIaOHVTLb0CUhpRSlGgVS9doFkdAlnPdpudf9nV9lChoBmgJaA9DCFLuPsfH9HJAlIaUUpRoFUvdaBZHQJZ02fukUK11fZQoaAZoCWgPQwjSpuoe2S5tQJSGlFKUaBVL3WgWR0CWdTf4yoGZdX2UKGgGaAloD0MIC3pvDEHZcUCUhpRSlGgVTQQBaBZHQJZ1QgFHJ911fZQoaAZoCWgPQwjlnUMZKjNkQJSGlFKUaBVN6ANoFkdAlnVPU4JeFHV9lChoBmgJaA9DCNTVHYtt2W5AlIaUUpRoFUvqaBZHQJZ1hNqQA+91fZQoaAZoCWgPQwiC5QgZSN5yQJSGlFKUaBVNKQFoFkdAlnZPbsWweXV9lChoBmgJaA9DCDP7PEY5J3JAlIaUUpRoFU0iAWgWR0CWdnnlnyuqdX2UKGgGaAloD0MIx/SEJR4kcUCUhpRSlGgVTQgBaBZHQJZ2meUY8+11fZQoaAZoCWgPQwgxQKIJ1IdxQJSGlFKUaBVL7GgWR0CWdyLQ5WBCdX2UKGgGaAloD0MIMgQAxx6KbkCUhpRSlGgVS/JoFkdAlneuxOclPnV9lChoBmgJaA9DCC1cVmFzGHBAlIaUUpRoFUv8aBZHQJZ4YABDG991fZQoaAZoCWgPQwjAkqtYfD5wQJSGlFKUaBVL7GgWR0CWeMpYs/Y8dX2UKGgGaAloD0MIiLmkajuAbkCUhpRSlGgVS+toFkdAlnkc0UGmk3V9lChoBmgJaA9DCGqme53UHXFAlIaUUpRoFUvjaBZHQJZ5mamXPZ91fZQoaAZoCWgPQwgIyJdQwQNyQJSGlFKUaBVL7WgWR0CWefidJ8OTdX2UKGgGaAloD0MIYr68ALumcUCUhpRSlGgVS95oFkdAlnp1PznRs3V9lChoBmgJaA9DCCrIz0YuN3RAlIaUUpRoFUvQaBZHQJZ6ghfShJ11fZQoaAZoCWgPQwgd6QyMvIJwQJSGlFKUaBVL42gWR0CWeuC9h7VsdX2UKGgGaAloD0MIINWw3xO2cECUhpRSlGgVS/FoFkdAlntD9KmKqHV9lChoBmgJaA9DCB2qKck6OXJAlIaUUpRoFUvyaBZHQJZ7hdcB2fV1fZQoaAZoCWgPQwiXjjnP2MtwQJSGlFKUaBVL3GgWR0CWe7fj0cwQdX2UKGgGaAloD0MIwck2cEewcECUhpRSlGgVS81oFkdAlnwnkYGdJHV9lChoBmgJaA9DCE5Ev7Z+tnBAlIaUUpRoFUvraBZHQJZ8URRMvh91fZQoaAZoCWgPQwimfXN/taVwQJSGlFKUaBVL8GgWR0CWfFF1SwW4dX2UKGgGaAloD0MIQ1iNJawUcUCUhpRSlGgVS85oFkdAln23S0BwM3V9lChoBmgJaA9DCOsaLQf6mG9AlIaUUpRoFU0AAWgWR0CWfeXhwVCYdX2UKGgGaAloD0MI7wG6L+eUckCUhpRSlGgVS+1oFkdAln7BRl6JInV9lChoBmgJaA9DCNnNjH507HBAlIaUUpRoFUvFaBZHQJZ/o1n/T9d1fZQoaAZoCWgPQwiJRQw7DHlxQJSGlFKUaBVL82gWR0CWf+QyAQQMdX2UKGgGaAloD0MIbHh6pewlcUCUhpRSlGgVS9BoFkdAloBpBPbfxnV9lChoBmgJaA9DCCGQSxw5MnNAlIaUUpRoFUvxaBZHQJaAeMDOkcl1fZQoaAZoCWgPQwiPF9LhIT1xQJSGlFKUaBVL+GgWR0CWgJrWiDdydX2UKGgGaAloD0MIeJj2zb3ncUCUhpRSlGgVTSYBaBZHQJaA5yjpLVZ1fZQoaAZoCWgPQwjfT42XbmBxQJSGlFKUaBVL12gWR0CWgOglnh86dX2UKGgGaAloD0MIQ41CktkUcECUhpRSlGgVS+doFkdAloGDIJZ4fXV9lChoBmgJaA9DCN0Gtd9aO25AlIaUUpRoFUvtaBZHQJaCXGcWj451fZQoaAZoCWgPQwhvDtdqz41wQJSGlFKUaBVL8WgWR0CWgnuFHrhSdX2UKGgGaAloD0MIu2OxTSpkcUCUhpRSlGgVTQYBaBZHQJaC4UfxMFl1fZQoaAZoCWgPQwhYN94dGRNxQJSGlFKUaBVLyGgWR0CWgwZXuE26dX2UKGgGaAloD0MIbHu7JXkVcUCUhpRSlGgVS+doFkdAloQLEk0JnnV9lChoBmgJaA9DCDgQkgUM3XBAlIaUUpRoFUvSaBZHQJaGhE4Nqg11fZQoaAZoCWgPQwgk8fJ0rlNvQJSGlFKUaBVL9WgWR0CWhsa7EpAldX2UKGgGaAloD0MInUtxVVmTcECUhpRSlGgVS+BoFkdAlob19Sde6nV9lChoBmgJaA9DCD7qr1dYdHJAlIaUUpRoFUvjaBZHQJaHUoYvWYp1fZQoaAZoCWgPQwjFOH8TyihxQJSGlFKUaBVL2WgWR0CWh12ETQE7dX2UKGgGaAloD0MIZd6q69BXbkCUhpRSlGgVS91oFkdAloeDot+TeXV9lChoBmgJaA9DCB4zUBk/snFAlIaUUpRoFUvpaBZHQJaIxMqSX+l1fZQoaAZoCWgPQwgTK6ORzx9lQJSGlFKUaBVN6ANoFkdAlojw84gieXV9lChoBmgJaA9DCOVDUDW6AnNAlIaUUpRoFUvTaBZHQJaJuwljVhF1fZQoaAZoCWgPQwhzvth78SBxQJSGlFKUaBVL7WgWR0CWih5U96kZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1000fc019891641495afa47182c7f087c1ebead325c48f0a85c1f54413d32361
|
3 |
+
size 147311
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa86ef79c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa86ef79ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa86ef79d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa86ef79dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa86ef79e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa86ef79ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa86ef79f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa86ef7d040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa86ef7d0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa86ef7d160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa86ef7d1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa86ef7d280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fa86ef73ea0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673753191241473428,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIYOdD5CGRA/rkTHvHkT2L4zlQU+CBc5vQAAAAAAAAAAQqenvrFysD7i5PI9wHOivuXQ+r1hpA0+AAAAAAAAAABGrRE+3GwTP0BQ1bwU8ai+rfC8PeL4sb0AAAAAAAAAAGZ0GT5S8JW7Q7GntrUxDDTA1QK9IPnMNQAAgD8AAIA/YDgAPvbasz+S5as+N+nyvs34FD6oVeU9AAAAAAAAAADNnpY8n4mouy/kmrypb089or0VPcIbKr4AAIA/AACAP+YTPz3l67c/Ou6tPuSfkL32lEE9woEJPgAAAAAAAAAAAJ/8vXEaDrtWU0o+jelRu9m2Fb3AU8w9AACAPwAAgD8AkKS7wQu2P4A5Ar9auAA/fui+O6X76z0AAAAAAAAAAFpuKb5pYji8KXCZuw8a+LlGybo9bLLLOgAAgD8AAIA/MxN4vRYL5T69WmG8R2Levub88bwdSrY9AAAAAAAAAACtUis+zsyTvFDA7LqK9Dk54E0FvreJIjoAAIA/AACAPyI6h75c27I+3EUPPvRqk77cf5e9wifrPQAAAAAAAAAAYB8lvmmVCLxWCoWzoxajsi7odz02mCw0AACAPwAAgD+AUIA9+mx8Pyd+pT2K7RS/2jyNPStVL70AAAAAAAAAAABZar2cxr8+bCWAPBCwtL4j4RO9KHppPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhC7h0Bt3cUCUhpRSlIwBbJRNEgGMAXSUR0CWXzmrbQC0dX2UKGgGaAloD0MIYajDCrfecECUhpRSlGgVS8RoFkdAll/LJSzgM3V9lChoBmgJaA9DCMJqLGFt+EFAlIaUUpRoFUu4aBZHQJZf+QQtjCp1fZQoaAZoCWgPQwiL/PohduRxQJSGlFKUaBVL02gWR0CWYVw4sEq2dX2UKGgGaAloD0MIZkrrb4kAc0CUhpRSlGgVS/toFkdAlmHrWmP5pXV9lChoBmgJaA9DCFTm5hvRQnBAlIaUUpRoFUvyaBZHQJZiubAk9lp1fZQoaAZoCWgPQwgFFytqsDpwQJSGlFKUaBVL52gWR0CWYulJHy3DdX2UKGgGaAloD0MIoiQk0rZxckCUhpRSlGgVS8ZoFkdAlmM/MGHHm3V9lChoBmgJaA9DCE0wnGvYAnRAlIaUUpRoFUvmaBZHQJZjWUTtb9t1fZQoaAZoCWgPQwgibHh6JXZvQJSGlFKUaBVL7GgWR0CWY2EVWS2ZdX2UKGgGaAloD0MIE5z6QPKQb0CUhpRSlGgVS9xoFkdAlmNyO3lS0nV9lChoBmgJaA9DCGLZzCEp/G5AlIaUUpRoFUvWaBZHQJZjqH8CPp91fZQoaAZoCWgPQwgFGQEVzqZwQJSGlFKUaBVL0GgWR0CWY7EOAiFCdX2UKGgGaAloD0MIQwHbwQiebECUhpRSlGgVS91oFkdAlmPFXNke63V9lChoBmgJaA9DCBeDh2nf9nFAlIaUUpRoFUvsaBZHQJZlHL6k6911fZQoaAZoCWgPQwhuMqoMI1ByQJSGlFKUaBVNGAFoFkdAlmV42S+xnnV9lChoBmgJaA9DCJZ4QNkUDG9AlIaUUpRoFUvqaBZHQJZl71UVBUt1fZQoaAZoCWgPQwimtWlsr4hwQJSGlFKUaBVL+GgWR0CWZha/ATIvdX2UKGgGaAloD0MIBFjk14+ScUCUhpRSlGgVS+xoFkdAlmgBPO6d2HV9lChoBmgJaA9DCCQLmMAtGm9AlIaUUpRoFUvWaBZHQJZoONcW0qp1fZQoaAZoCWgPQwgX78ftFwpvQJSGlFKUaBVL3GgWR0CWaJgvDgqFdX2UKGgGaAloD0MIVTGVfkJeckCUhpRSlGgVTRYBaBZHQJZopz8xbjd1fZQoaAZoCWgPQwico46OKxZyQJSGlFKUaBVL0GgWR0CWaLxIJ7b+dX2UKGgGaAloD0MIOXtntFVeb0CUhpRSlGgVS9hoFkdAlmjQXl8w6HV9lChoBmgJaA9DCC+mme51IHFAlIaUUpRoFUvPaBZHQJZpAjhUBGR1fZQoaAZoCWgPQwj3BIntbvxuQJSGlFKUaBVL3WgWR0CWaR9ph4MXdX2UKGgGaAloD0MIpKXydgQFbkCUhpRSlGgVS9RoFkdAlmk8Co0hvHV9lChoBmgJaA9DCK7yBMLOj3BAlIaUUpRoFUvqaBZHQJZpT0ulGgB1fZQoaAZoCWgPQwhnYroQK4xvQJSGlFKUaBVL3WgWR0CWaVf/m1YydX2UKGgGaAloD0MIZ/FiYcidcECUhpRSlGgVTQIBaBZHQJZro89wFTx1fZQoaAZoCWgPQwiIE5hO65NyQJSGlFKUaBVL9WgWR0CWa6sz2vjfdX2UKGgGaAloD0MItoKmJdYRbkCUhpRSlGgVS+VoFkdAlmu/VEuxr3V9lChoBmgJaA9DCCY2H9eGD3FAlIaUUpRoFUvoaBZHQJZr+SSvC/J1fZQoaAZoCWgPQwiyLm6jAQlxQJSGlFKUaBVLz2gWR0CWbeIoE0SAdX2UKGgGaAloD0MI0uKMYc5bb0CUhpRSlGgVS9FoFkdAlm4glnh86XV9lChoBmgJaA9DCJLPK566WnNAlIaUUpRoFUvsaBZHQJZuVr/Khct1fZQoaAZoCWgPQwhTA83nnBByQJSGlFKUaBVL02gWR0CWbm8ox59mdX2UKGgGaAloD0MIi3CTUeX6cECUhpRSlGgVS/poFkdAlm6IwIt16nV9lChoBmgJaA9DCDATRUhdcW9AlIaUUpRoFUvWaBZHQJZu5AMUh3d1fZQoaAZoCWgPQwjkSj0LQhhwQJSGlFKUaBVL52gWR0CWbx9F4LThdX2UKGgGaAloD0MIyO9t+rN2cECUhpRSlGgVS+1oFkdAlm9pYLb5/XV9lChoBmgJaA9DCD7ONGH78m9AlIaUUpRoFUvpaBZHQJZvdANXo1V1fZQoaAZoCWgPQwgUeZJ0TdByQJSGlFKUaBVNEwFoFkdAlm+yvxH5J3V9lChoBmgJaA9DCHnL1Y/NxXJAlIaUUpRoFU1BAWgWR0CWcPhSLqD9dX2UKGgGaAloD0MII0xRLs2scECUhpRSlGgVS9doFkdAlnFlVcUuc3V9lChoBmgJaA9DCHGqtTALZnFAlIaUUpRoFUvlaBZHQJZx1NHpbEB1fZQoaAZoCWgPQwizs+idSmlwQJSGlFKUaBVL+2gWR0CWcqABDG96dX2UKGgGaAloD0MIVtehmlLIckCUhpRSlGgVTRQBaBZHQJZy9MlC1JF1fZQoaAZoCWgPQwjOUrKcBEVuQJSGlFKUaBVL4GgWR0CWc7Y9Pk7wdX2UKGgGaAloD0MIQIaOHVTLb0CUhpRSlGgVS9doFkdAlnPdpudf9nV9lChoBmgJaA9DCFLuPsfH9HJAlIaUUpRoFUvdaBZHQJZ02fukUK11fZQoaAZoCWgPQwjSpuoe2S5tQJSGlFKUaBVL3WgWR0CWdTf4yoGZdX2UKGgGaAloD0MIC3pvDEHZcUCUhpRSlGgVTQQBaBZHQJZ1QgFHJ911fZQoaAZoCWgPQwjlnUMZKjNkQJSGlFKUaBVN6ANoFkdAlnVPU4JeFHV9lChoBmgJaA9DCNTVHYtt2W5AlIaUUpRoFUvqaBZHQJZ1hNqQA+91fZQoaAZoCWgPQwiC5QgZSN5yQJSGlFKUaBVNKQFoFkdAlnZPbsWweXV9lChoBmgJaA9DCDP7PEY5J3JAlIaUUpRoFU0iAWgWR0CWdnnlnyuqdX2UKGgGaAloD0MIx/SEJR4kcUCUhpRSlGgVTQgBaBZHQJZ2meUY8+11fZQoaAZoCWgPQwgxQKIJ1IdxQJSGlFKUaBVL7GgWR0CWdyLQ5WBCdX2UKGgGaAloD0MIMgQAxx6KbkCUhpRSlGgVS/JoFkdAlneuxOclPnV9lChoBmgJaA9DCC1cVmFzGHBAlIaUUpRoFUv8aBZHQJZ4YABDG991fZQoaAZoCWgPQwjAkqtYfD5wQJSGlFKUaBVL7GgWR0CWeMpYs/Y8dX2UKGgGaAloD0MIiLmkajuAbkCUhpRSlGgVS+toFkdAlnkc0UGmk3V9lChoBmgJaA9DCGqme53UHXFAlIaUUpRoFUvjaBZHQJZ5mamXPZ91fZQoaAZoCWgPQwgIyJdQwQNyQJSGlFKUaBVL7WgWR0CWefidJ8OTdX2UKGgGaAloD0MIYr68ALumcUCUhpRSlGgVS95oFkdAlnp1PznRs3V9lChoBmgJaA9DCCrIz0YuN3RAlIaUUpRoFUvQaBZHQJZ6ghfShJ11fZQoaAZoCWgPQwgd6QyMvIJwQJSGlFKUaBVL42gWR0CWeuC9h7VsdX2UKGgGaAloD0MIINWw3xO2cECUhpRSlGgVS/FoFkdAlntD9KmKqHV9lChoBmgJaA9DCB2qKck6OXJAlIaUUpRoFUvyaBZHQJZ7hdcB2fV1fZQoaAZoCWgPQwiXjjnP2MtwQJSGlFKUaBVL3GgWR0CWe7fj0cwQdX2UKGgGaAloD0MIwck2cEewcECUhpRSlGgVS81oFkdAlnwnkYGdJHV9lChoBmgJaA9DCE5Ev7Z+tnBAlIaUUpRoFUvraBZHQJZ8URRMvh91fZQoaAZoCWgPQwimfXN/taVwQJSGlFKUaBVL8GgWR0CWfFF1SwW4dX2UKGgGaAloD0MIQ1iNJawUcUCUhpRSlGgVS85oFkdAln23S0BwM3V9lChoBmgJaA9DCOsaLQf6mG9AlIaUUpRoFU0AAWgWR0CWfeXhwVCYdX2UKGgGaAloD0MI7wG6L+eUckCUhpRSlGgVS+1oFkdAln7BRl6JInV9lChoBmgJaA9DCNnNjH507HBAlIaUUpRoFUvFaBZHQJZ/o1n/T9d1fZQoaAZoCWgPQwiJRQw7DHlxQJSGlFKUaBVL82gWR0CWf+QyAQQMdX2UKGgGaAloD0MIbHh6pewlcUCUhpRSlGgVS9BoFkdAloBpBPbfxnV9lChoBmgJaA9DCCGQSxw5MnNAlIaUUpRoFUvxaBZHQJaAeMDOkcl1fZQoaAZoCWgPQwiPF9LhIT1xQJSGlFKUaBVL+GgWR0CWgJrWiDdydX2UKGgGaAloD0MIeJj2zb3ncUCUhpRSlGgVTSYBaBZHQJaA5yjpLVZ1fZQoaAZoCWgPQwjfT42XbmBxQJSGlFKUaBVL12gWR0CWgOglnh86dX2UKGgGaAloD0MIQ41CktkUcECUhpRSlGgVS+doFkdAloGDIJZ4fXV9lChoBmgJaA9DCN0Gtd9aO25AlIaUUpRoFUvtaBZHQJaCXGcWj451fZQoaAZoCWgPQwhvDtdqz41wQJSGlFKUaBVL8WgWR0CWgnuFHrhSdX2UKGgGaAloD0MIu2OxTSpkcUCUhpRSlGgVTQYBaBZHQJaC4UfxMFl1fZQoaAZoCWgPQwhYN94dGRNxQJSGlFKUaBVLyGgWR0CWgwZXuE26dX2UKGgGaAloD0MIbHu7JXkVcUCUhpRSlGgVS+doFkdAloQLEk0JnnV9lChoBmgJaA9DCDgQkgUM3XBAlIaUUpRoFUvSaBZHQJaGhE4Nqg11fZQoaAZoCWgPQwgk8fJ0rlNvQJSGlFKUaBVL9WgWR0CWhsa7EpAldX2UKGgGaAloD0MInUtxVVmTcECUhpRSlGgVS+BoFkdAlob19Sde6nV9lChoBmgJaA9DCD7qr1dYdHJAlIaUUpRoFUvjaBZHQJaHUoYvWYp1fZQoaAZoCWgPQwjFOH8TyihxQJSGlFKUaBVL2WgWR0CWh12ETQE7dX2UKGgGaAloD0MIZd6q69BXbkCUhpRSlGgVS91oFkdAloeDot+TeXV9lChoBmgJaA9DCB4zUBk/snFAlIaUUpRoFUvpaBZHQJaIxMqSX+l1fZQoaAZoCWgPQwgTK6ORzx9lQJSGlFKUaBVN6ANoFkdAlojw84gieXV9lChoBmgJaA9DCOVDUDW6AnNAlIaUUpRoFUvTaBZHQJaJuwljVhF1fZQoaAZoCWgPQwhzvth78SBxQJSGlFKUaBVL7WgWR0CWih5U96kZdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b28d34d81785544403643fc0f581351559c9c366d98e212cbc4acdf6fe5b3ef1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:692a6d5c0c06889195ec61ded7217952ca5cf70d36c7af99b75ced81f4b91cc8
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.42493279120055, "std_reward": 38.21663659550122, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T03:58:47.775897"}
|