--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - DioLiu/autotrain-data-koles_score co2_eq_emissions: emissions: 0.009007200392120884 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3215890190 - CO2 Emissions (in grams): 0.0090 ## Validation Metrics - Loss: 1.187 - Accuracy: 0.542 - Macro F1: 0.368 - Micro F1: 0.542 - Weighted F1: 0.482 - Macro Precision: 0.331 - Micro Precision: 0.542 - Weighted Precision: 0.434 - Macro Recall: 0.414 - Micro Recall: 0.542 - Weighted Recall: 0.542 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/DioLiu/autotrain-koles_score-3215890190 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("DioLiu/autotrain-koles_score-3215890190", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("DioLiu/autotrain-koles_score-3215890190", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```