Diogo-V commited on
Commit
a06b5c0
1 Parent(s): b821488

Upload learned functions

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. fn_gen/rnd_search_fb/1/distortion.png +0 -0
  2. fn_gen/rnd_search_fb/1/expressions.txt +2 -0
  3. fn_gen/rnd_search_fb/1/fn.py +584 -0
  4. fn_gen/rnd_search_fb/1/loss.png +0 -0
  5. fn_gen/rnd_search_fb/1/quantization.png +0 -0
  6. fn_gen/rnd_search_fb/10/distortion.png +0 -0
  7. fn_gen/rnd_search_fb/10/expressions.txt +2 -0
  8. fn_gen/rnd_search_fb/10/fn.py +584 -0
  9. fn_gen/rnd_search_fb/10/loss.png +0 -0
  10. fn_gen/rnd_search_fb/10/quantization.png +0 -0
  11. fn_gen/rnd_search_fb/11/distortion.png +0 -0
  12. fn_gen/rnd_search_fb/11/expressions.txt +2 -0
  13. fn_gen/rnd_search_fb/11/fn.py +584 -0
  14. fn_gen/rnd_search_fb/11/loss.png +0 -0
  15. fn_gen/rnd_search_fb/11/quantization.png +0 -0
  16. fn_gen/rnd_search_fb/12/distortion.png +0 -0
  17. fn_gen/rnd_search_fb/12/expressions.txt +2 -0
  18. fn_gen/rnd_search_fb/12/fn.py +498 -0
  19. fn_gen/rnd_search_fb/12/loss.png +0 -0
  20. fn_gen/rnd_search_fb/12/quantization.png +0 -0
  21. fn_gen/rnd_search_fb/13/distortion.png +0 -0
  22. fn_gen/rnd_search_fb/13/expressions.txt +2 -0
  23. fn_gen/rnd_search_fb/13/fn.py +584 -0
  24. fn_gen/rnd_search_fb/13/loss.png +0 -0
  25. fn_gen/rnd_search_fb/13/quantization.png +0 -0
  26. fn_gen/rnd_search_fb/15/distortion.png +0 -0
  27. fn_gen/rnd_search_fb/15/expressions.txt +2 -0
  28. fn_gen/rnd_search_fb/15/fn.py +498 -0
  29. fn_gen/rnd_search_fb/15/loss.png +0 -0
  30. fn_gen/rnd_search_fb/15/quantization.png +0 -0
  31. fn_gen/rnd_search_fb/16/distortion.png +0 -0
  32. fn_gen/rnd_search_fb/16/expressions.txt +2 -0
  33. fn_gen/rnd_search_fb/16/fn.py +584 -0
  34. fn_gen/rnd_search_fb/16/loss.png +0 -0
  35. fn_gen/rnd_search_fb/16/quantization.png +0 -0
  36. fn_gen/rnd_search_fb/17/distortion.png +0 -0
  37. fn_gen/rnd_search_fb/17/expressions.txt +2 -0
  38. fn_gen/rnd_search_fb/17/fn.py +584 -0
  39. fn_gen/rnd_search_fb/17/loss.png +0 -0
  40. fn_gen/rnd_search_fb/17/quantization.png +0 -0
  41. fn_gen/rnd_search_fb/18/distortion.png +0 -0
  42. fn_gen/rnd_search_fb/18/expressions.txt +2 -0
  43. fn_gen/rnd_search_fb/18/fn.py +584 -0
  44. fn_gen/rnd_search_fb/18/loss.png +0 -0
  45. fn_gen/rnd_search_fb/18/quantization.png +0 -0
  46. fn_gen/rnd_search_fb/2/distortion.png +0 -0
  47. fn_gen/rnd_search_fb/2/expressions.txt +2 -0
  48. fn_gen/rnd_search_fb/2/fn.py +498 -0
  49. fn_gen/rnd_search_fb/2/loss.png +0 -0
  50. fn_gen/rnd_search_fb/2/quantization.png +0 -0
fn_gen/rnd_search_fb/1/distortion.png ADDED
fn_gen/rnd_search_fb/1/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ asin(_0*x)/_s
2
+ sin(_s*x)/_0
fn_gen/rnd_search_fb/1/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.asin(domain_guard((params['_0'] * x), min=-0.99999, max=0.99999, nan=0)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.sin((params['_s'] * x)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.arcsin(np_domain_guard((_0 * x), min=-0.99999, max=0.99999, nan=0)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.sin((_s * x)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/1/loss.png ADDED
fn_gen/rnd_search_fb/1/quantization.png ADDED
fn_gen/rnd_search_fb/10/distortion.png ADDED
fn_gen/rnd_search_fb/10/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ asinh(_0*x)/_s
2
+ sinh(_s*x)/_0
fn_gen/rnd_search_fb/10/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.asinh((params['_0'] * x)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.sinh((params['_s'] * x)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.arcsinh((_0 * x)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.sinh((_s * x)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/10/loss.png ADDED
fn_gen/rnd_search_fb/10/quantization.png ADDED
fn_gen/rnd_search_fb/11/distortion.png ADDED
fn_gen/rnd_search_fb/11/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ atanh(_0*x)/_s
2
+ tanh(_s*x)/_0
fn_gen/rnd_search_fb/11/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.atanh(domain_guard((params['_0'] * x), min=-0.9999, max=0.9999, nan=0)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.tanh((params['_s'] * x)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.arctanh(np_domain_guard((_0 * x), min=-0.9999, max=0.9999, nan=0)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.tanh((_s * x)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/11/loss.png ADDED
fn_gen/rnd_search_fb/11/quantization.png ADDED
fn_gen/rnd_search_fb/12/distortion.png ADDED
fn_gen/rnd_search_fb/12/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ x/_s
2
+ _s*x
fn_gen/rnd_search_fb/12/fn.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (x * torch.div(1, replace_num(params['_s'], num=0, to=10000)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (params['_s'] * x)
19
+
20
+
21
+ def init_linear_scale( # Symmetric scale. From the study folder
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+ assert "bits" in kwargs, "bits must be provided."
26
+ assert "params" in kwargs, "params must be provided."
27
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
28
+
29
+ bits = kwargs.get('bits')
30
+ params = kwargs.get('params')
31
+ qtz_func = kwargs.get('qtz_func')
32
+
33
+ x_ = x.transpose(0, 1)
34
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
35
+ x_ = x_.transpose(0, 1)
36
+
37
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
38
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
39
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
40
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
41
+
42
+ eps = torch.finfo(torch.float32).eps
43
+
44
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
45
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
46
+
47
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
48
+
49
+ # Introduces some noise in scale
50
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
51
+ # scale = scale + 0.01 * torch.randn_like(scale)
52
+ return scale
53
+
54
+
55
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
56
+ params = {
57
+ }
58
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
59
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
60
+
61
+ if 'post_init_hook' in kwargs:
62
+ kwargs['post_init_hook'](parameters=params)
63
+
64
+
65
+ if 'post_train_hook' in kwargs:
66
+ kwargs['post_train_hook'](parameters=params)
67
+
68
+ return params
69
+
70
+
71
+ ############### Numpy Qtz ###############
72
+
73
+
74
+ def np_quantization(x, _s):
75
+ return (x * np.divide(1, np_replace_num(_s, num=0, to=10000)))
76
+
77
+
78
+ def np_dequantization(x, _s):
79
+ return (_s * x)
80
+
81
+
82
+ def fit_func(x, _s):
83
+ x_ = np_quantization(x, _s)
84
+ x_ = np_dequantization(x_, _s)
85
+ return x_
86
+
87
+
88
+
89
+ ############### HELPERS ###############
90
+
91
+ def domain_guard(
92
+ x: torch.Tensor,
93
+ min: float = None,
94
+ max: float = None,
95
+ posinf: float = None,
96
+ neginf: float = None,
97
+ nan: float = None
98
+ ) -> torch.Tensor:
99
+ """Guard a tensor to a valid domain."""
100
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
101
+ if min is not None or max is not None:
102
+ x = torch.clamp(x, min=min, max=max)
103
+ return x
104
+
105
+
106
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
107
+ """Replace a number in a tensor with another number.
108
+
109
+ Args:
110
+ x (torch.Tensor): The input tensor.
111
+ num (float): The number to replace.
112
+ to (float): The number to replace with.
113
+
114
+ Returns:
115
+ torch.Tensor: The tensor with the number replaced.
116
+ """
117
+ return torch.where(x == num, to, x)
118
+
119
+
120
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
121
+ """Guard the power operation to a valid domain."""
122
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
123
+
124
+
125
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
126
+ val = torch.amin(x, dim=1)
127
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
128
+
129
+
130
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
131
+ val = torch.amin(x, dim=1)
132
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
133
+
134
+
135
+ def init_space_search(
136
+ x: torch.Tensor,
137
+ **kwargs: Dict[str, Any],
138
+ ) -> torch.Tensor:
139
+
140
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
141
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
142
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
143
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
144
+
145
+ def _search_param(tensors: List[torch.tensor], n_params):
146
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
147
+ torch_tensors = torch.stack(tensors)
148
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
149
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
150
+ mean = torch.mean(torch_tensors, dim=0)
151
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
152
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
153
+
154
+ def _calc(x, qtz_func, deqtz_func, **params):
155
+ x_ = x.transpose(0, 1)
156
+ x_ = qtz_func(x=x_, **params)
157
+ x_ = deqtz_func(x=x_, **params)
158
+ x_ = x_.transpose(0, 1)
159
+ return x_
160
+
161
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
162
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
163
+ assert "params_list" in kwargs, "params list must be provided."
164
+ assert "param" in kwargs, "param must be provided."
165
+
166
+ qtz_func = kwargs.get('qtz_func')
167
+ deqtz_func = kwargs.get('deqtz_func')
168
+ params_list = kwargs.get('params_list')
169
+ param = kwargs.get('param')
170
+
171
+ n_runs = 50 # Number of runs to try to find the best parameters
172
+ n_random_params = 50 # Number of random parameters to generate
173
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
174
+ max_initial = 10000 # Maximum value to initialize the parameters
175
+
176
+ # Initializes the parameters
177
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
178
+ params = _build_initial_param(x, max_initial, n_random_params)
179
+
180
+ # Performs the search
181
+ for _ in range(n_runs):
182
+
183
+ best_params = []
184
+ for param_ in params:
185
+ try:
186
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
187
+ loss_ones = nn.MSELoss()(x, x_)
188
+
189
+ if len(best_params) < n_best_to_pick:
190
+ best_params.append((param_, loss_ones.item()))
191
+ best_params = sorted(best_params, key=lambda x: x[1])
192
+ elif loss_ones < best_params[-1][1]:
193
+ best_params[-1] = (param_, loss_ones.item())
194
+ best_params = sorted(best_params, key=lambda x: x[1])
195
+
196
+ except Exception: # The parameters might not be valid for the function's domain
197
+ continue
198
+
199
+ # Generates new parameters around the mean
200
+ params = _search_param([p for p, _ in best_params], n_random_params)
201
+
202
+ # Checks if the best parameter is better than the init_ones
203
+ p_ones = init_ones(x, **kwargs)
204
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
205
+ loss_ones = nn.MSELoss()(x, x_)
206
+
207
+ # Checks if the best parameter is better than the init_rand
208
+ p_rand = init_rand(x, **kwargs)
209
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
210
+ loss_rand = nn.MSELoss()(x, x_)
211
+
212
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
213
+ return p_rand
214
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
215
+ return p_ones
216
+ else:
217
+ return best_params[0][0]
218
+
219
+
220
+ def init_linear_scale( # Symmetric scale. From the study folder
221
+ x: torch.Tensor,
222
+ **kwargs: Dict[str, Any],
223
+ ) -> torch.Tensor:
224
+ assert "bits" in kwargs, "bits must be provided."
225
+ assert "params" in kwargs, "params must be provided."
226
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
227
+
228
+ bits = kwargs.get('bits')
229
+ params = kwargs.get('params')
230
+ qtz_func = kwargs.get('qtz_func')
231
+
232
+ x_ = x.transpose(0, 1)
233
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
234
+ x_ = x_.transpose(0, 1)
235
+
236
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
237
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
238
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
239
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
240
+
241
+ eps = torch.finfo(torch.float32).eps
242
+
243
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
244
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
245
+
246
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
247
+
248
+ # Introduces some noise in scale
249
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
250
+ # scale = scale + 0.01 * torch.randn_like(scale)
251
+ return scale
252
+
253
+
254
+ def init_non_linear_regression_fit(
255
+ x: torch.Tensor,
256
+ **kwargs: Dict[str, Any],
257
+ ) -> torch.Tensor:
258
+
259
+ assert "params_list" in kwargs, "params list must be provided."
260
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
261
+ assert "p0" in kwargs, "p0 must be provided."
262
+ np_fit_func = kwargs.get('np_fit_func')
263
+ params_list = kwargs.get('params_list')
264
+ p0 = kwargs.get('p0')
265
+
266
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
267
+ popt, _ = curve_fit(
268
+ func,
269
+ xdata,
270
+ ydata,
271
+ maxfev=1000,
272
+ p0=p0,
273
+ method='lm'
274
+ )
275
+ return popt
276
+
277
+ # 1. Needs to convert the torch tensor to numpy tensor
278
+ xdata = x.cpu().numpy()
279
+
280
+ # 2. Sorts the data so that it makes it easier to fit to it
281
+ sorted_xdata = np.sort(xdata, axis=-1)
282
+
283
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
284
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
285
+
286
+ # 3. Finds the best parameters for each channel
287
+ try:
288
+ params = []
289
+ for i in range(sorted_xdata.shape[0]):
290
+ xdata_ = sorted_xdata[i]
291
+ p0_ = [p0[p][i] for p in params_list]
292
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
293
+ params.append(ch_params)
294
+
295
+ # 4. Builds the parameters
296
+ result = {}
297
+ for i, p in enumerate(params_list):
298
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
299
+
300
+ return result
301
+
302
+ except ValueError as e:
303
+ print(f"Could not fit the function with error: {e}")
304
+ print(f"Using fallback result...")
305
+ return {
306
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
307
+ }
308
+
309
+
310
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
311
+ val = torch.amin(x, dim=1)
312
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
313
+
314
+
315
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
316
+ # Calculate the original minimum and maximum values
317
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
318
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
319
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
320
+
321
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
322
+ return torch.ones_like(x_min)
323
+
324
+ # Calculate the scale factor
325
+ scale = (_max - _min) / (x_max - x_min)
326
+ return scale
327
+
328
+
329
+
330
+ ############## Quant ###############
331
+
332
+ @torch.enable_grad()
333
+ def learn_parameters(
334
+ x: torch.Tensor,
335
+ params: Dict[str, nn.Parameter],
336
+ qtz_func: nn.Module,
337
+ deqtz_func: nn.Module,
338
+ bits: int,
339
+ target_dtype: torch.dtype,
340
+ epochs: int = 1000,
341
+ early_stop: bool = True,
342
+ do_report: bool = False
343
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
344
+ loss_fn = nn.MSELoss()
345
+
346
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
347
+ # the order of magnitude of the loss divided by 2
348
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
349
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
350
+ loss = loss_fn(x, dequant)
351
+
352
+ base_lr = 0.1
353
+ exponent = int(np.floor(np.log10(loss.item())))
354
+ lr = base_lr * (10 ** (exponent // 2))
355
+
356
+ # Requires gradients in the parameters
357
+ for p in params.values():
358
+ p.requires_grad = True
359
+ p.grad = None
360
+
361
+ param_keys = list(params.keys())
362
+ param_values = list(params.values())
363
+
364
+ # Defines optimizer and loss function
365
+ optimizer = torch.optim.Adam(param_values, lr=lr)
366
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
367
+
368
+ # Contains the best loss and the best parameters
369
+ best_loss = float("inf")
370
+ best_params = None
371
+
372
+ # Used to stop the search early
373
+ min_delta = 1e-7
374
+ acc_loss = []
375
+ percent_epochs_before_stop = 0.1
376
+
377
+ for i in range(epochs):
378
+ optimizer.zero_grad()
379
+
380
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
381
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
382
+ loss = loss_fn(x, dequant)
383
+
384
+ if loss.isnan() or loss.isinf():
385
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
386
+
387
+ loss.backward()
388
+ optimizer.step()
389
+ scheduler.step()
390
+
391
+ acc_loss.append(loss.item())
392
+
393
+ # Reports loss every 10 steps
394
+ if i % 10 == 0 and do_report:
395
+ print(f"Epoch {i}: Loss {loss.item()}")
396
+
397
+ # Optimizes the parameter search by storing the best loss and the parameters
398
+ if loss.item() < best_loss:
399
+ best_loss = loss.item()
400
+ best_params = copy.deepcopy({
401
+ k: v for k, v in params.items() if k in param_keys
402
+ })
403
+
404
+ # We also stop the search if the loss has not considerably during the last 10% epochs
405
+ if early_stop:
406
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
407
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
408
+ break
409
+
410
+ # No longer requires gradients in the parameters
411
+ for p in best_params.values():
412
+ p.requires_grad = False
413
+ p.grad = None
414
+
415
+ if do_report:
416
+ return best_params, acc_loss
417
+ else:
418
+ return best_params
419
+
420
+
421
+ def quantize(
422
+ x: torch.Tensor,
423
+ params: Dict[str, nn.Parameter],
424
+ func: nn.Module,
425
+ bits: int,
426
+ target_dtype: torch.dtype = torch.int8
427
+ ) -> torch.Tensor:
428
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
429
+ x = x.transpose(0, 1) # Aligns shapes
430
+ x = func(x=x, **params)
431
+ x = x.transpose(0, 1)
432
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
433
+ return x
434
+
435
+
436
+ def dequantize(
437
+ x: torch.Tensor,
438
+ params: Dict[str, nn.Parameter],
439
+ func: nn.Module,
440
+ bits: int,
441
+ out_dtype: torch.dtype
442
+ ) -> torch.Tensor:
443
+ x = x.to(dtype=out_dtype)
444
+ x = x.transpose(0, 1)
445
+ x = func(x=x, **params)
446
+ x = x.transpose(0, 1)
447
+ return x
448
+
449
+
450
+ def round_func_BPDA(input):
451
+ # This is equivalent to replacing round function (non-differentiable) with
452
+ # an identity function (differentiable) only when backward.
453
+ forward_value = torch.round(input)
454
+ out = input.clone()
455
+ out.data = forward_value.data
456
+ return out
457
+
458
+
459
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
460
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
461
+
462
+
463
+
464
+ ############## Numpy ###############
465
+
466
+ def np_domain_guard(
467
+ x: np.ndarray,
468
+ min: float = None,
469
+ max: float = None,
470
+ posinf: float = None,
471
+ neginf: float = None,
472
+ nan: float = None
473
+ ) -> np.ndarray:
474
+ """Guard a tensor to a valid domain."""
475
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
476
+ if min is not None or max is not None:
477
+ x = np.clip(x, min, max)
478
+ return x
479
+
480
+
481
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
482
+ """Replace a number in a tensor with another number.
483
+
484
+ Args:
485
+ x (np.ndarray): The input tensor.
486
+ num (float): The number to replace.
487
+ to (float): The number to replace with.
488
+
489
+ Returns:
490
+ np.ndarray: The tensor with the number replaced.
491
+ """
492
+ return np.where(x == num, to, x)
493
+
494
+
495
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
496
+ """Guard the power operation to a valid domain."""
497
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
498
+
fn_gen/rnd_search_fb/12/loss.png ADDED
fn_gen/rnd_search_fb/12/quantization.png ADDED
fn_gen/rnd_search_fb/13/distortion.png ADDED
fn_gen/rnd_search_fb/13/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ tanh(_0*x)/_s
2
+ log((-_s*x - 1)/(_s*x - 1))/_0
fn_gen/rnd_search_fb/13/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.tanh((params['_0'] * x)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.log(domain_guard((torch.div(1, replace_num((torch.tensor(-1) + (params['_s'] * x)), num=0, to=10000)) * (torch.tensor(-1) + (torch.tensor(-1) * params['_s'] * x))), min=1e-5, nan=1e-5)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.tanh((_0 * x)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.log(np_domain_guard((np.divide(1, np_replace_num((np.array(-1) + (_s * x)), num=0, to=10000)) * (np.array(-1) + (np.array(-1) * _s * x))), min=1e-5, nan=1e-5)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/13/loss.png ADDED
fn_gen/rnd_search_fb/13/quantization.png ADDED
fn_gen/rnd_search_fb/15/distortion.png ADDED
fn_gen/rnd_search_fb/15/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ x**2/_s
2
+ sqrt(_s*x)
fn_gen/rnd_search_fb/15/fn.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * guarded_torch_power(x, torch.tensor(2)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return torch.sqrt(domain_guard((params['_s'] * x), min=0.1, nan=0.1))
19
+
20
+
21
+ def init_linear_scale( # Symmetric scale. From the study folder
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+ assert "bits" in kwargs, "bits must be provided."
26
+ assert "params" in kwargs, "params must be provided."
27
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
28
+
29
+ bits = kwargs.get('bits')
30
+ params = kwargs.get('params')
31
+ qtz_func = kwargs.get('qtz_func')
32
+
33
+ x_ = x.transpose(0, 1)
34
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
35
+ x_ = x_.transpose(0, 1)
36
+
37
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
38
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
39
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
40
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
41
+
42
+ eps = torch.finfo(torch.float32).eps
43
+
44
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
45
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
46
+
47
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
48
+
49
+ # Introduces some noise in scale
50
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
51
+ # scale = scale + 0.01 * torch.randn_like(scale)
52
+ return scale
53
+
54
+
55
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
56
+ params = {
57
+ }
58
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
59
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
60
+
61
+ if 'post_init_hook' in kwargs:
62
+ kwargs['post_init_hook'](parameters=params)
63
+
64
+
65
+ if 'post_train_hook' in kwargs:
66
+ kwargs['post_train_hook'](parameters=params)
67
+
68
+ return params
69
+
70
+
71
+ ############### Numpy Qtz ###############
72
+
73
+
74
+ def np_quantization(x, _s):
75
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np_guarded_power(x, np.array(2)))
76
+
77
+
78
+ def np_dequantization(x, _s):
79
+ return np.sqrt(np_domain_guard((_s * x), min=0.1, nan=0.1))
80
+
81
+
82
+ def fit_func(x, _s):
83
+ x_ = np_quantization(x, _s)
84
+ x_ = np_dequantization(x_, _s)
85
+ return x_
86
+
87
+
88
+
89
+ ############### HELPERS ###############
90
+
91
+ def domain_guard(
92
+ x: torch.Tensor,
93
+ min: float = None,
94
+ max: float = None,
95
+ posinf: float = None,
96
+ neginf: float = None,
97
+ nan: float = None
98
+ ) -> torch.Tensor:
99
+ """Guard a tensor to a valid domain."""
100
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
101
+ if min is not None or max is not None:
102
+ x = torch.clamp(x, min=min, max=max)
103
+ return x
104
+
105
+
106
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
107
+ """Replace a number in a tensor with another number.
108
+
109
+ Args:
110
+ x (torch.Tensor): The input tensor.
111
+ num (float): The number to replace.
112
+ to (float): The number to replace with.
113
+
114
+ Returns:
115
+ torch.Tensor: The tensor with the number replaced.
116
+ """
117
+ return torch.where(x == num, to, x)
118
+
119
+
120
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
121
+ """Guard the power operation to a valid domain."""
122
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
123
+
124
+
125
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
126
+ val = torch.amin(x, dim=1)
127
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
128
+
129
+
130
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
131
+ val = torch.amin(x, dim=1)
132
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
133
+
134
+
135
+ def init_space_search(
136
+ x: torch.Tensor,
137
+ **kwargs: Dict[str, Any],
138
+ ) -> torch.Tensor:
139
+
140
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
141
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
142
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
143
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
144
+
145
+ def _search_param(tensors: List[torch.tensor], n_params):
146
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
147
+ torch_tensors = torch.stack(tensors)
148
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
149
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
150
+ mean = torch.mean(torch_tensors, dim=0)
151
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
152
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
153
+
154
+ def _calc(x, qtz_func, deqtz_func, **params):
155
+ x_ = x.transpose(0, 1)
156
+ x_ = qtz_func(x=x_, **params)
157
+ x_ = deqtz_func(x=x_, **params)
158
+ x_ = x_.transpose(0, 1)
159
+ return x_
160
+
161
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
162
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
163
+ assert "params_list" in kwargs, "params list must be provided."
164
+ assert "param" in kwargs, "param must be provided."
165
+
166
+ qtz_func = kwargs.get('qtz_func')
167
+ deqtz_func = kwargs.get('deqtz_func')
168
+ params_list = kwargs.get('params_list')
169
+ param = kwargs.get('param')
170
+
171
+ n_runs = 50 # Number of runs to try to find the best parameters
172
+ n_random_params = 50 # Number of random parameters to generate
173
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
174
+ max_initial = 10000 # Maximum value to initialize the parameters
175
+
176
+ # Initializes the parameters
177
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
178
+ params = _build_initial_param(x, max_initial, n_random_params)
179
+
180
+ # Performs the search
181
+ for _ in range(n_runs):
182
+
183
+ best_params = []
184
+ for param_ in params:
185
+ try:
186
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
187
+ loss_ones = nn.MSELoss()(x, x_)
188
+
189
+ if len(best_params) < n_best_to_pick:
190
+ best_params.append((param_, loss_ones.item()))
191
+ best_params = sorted(best_params, key=lambda x: x[1])
192
+ elif loss_ones < best_params[-1][1]:
193
+ best_params[-1] = (param_, loss_ones.item())
194
+ best_params = sorted(best_params, key=lambda x: x[1])
195
+
196
+ except Exception: # The parameters might not be valid for the function's domain
197
+ continue
198
+
199
+ # Generates new parameters around the mean
200
+ params = _search_param([p for p, _ in best_params], n_random_params)
201
+
202
+ # Checks if the best parameter is better than the init_ones
203
+ p_ones = init_ones(x, **kwargs)
204
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
205
+ loss_ones = nn.MSELoss()(x, x_)
206
+
207
+ # Checks if the best parameter is better than the init_rand
208
+ p_rand = init_rand(x, **kwargs)
209
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
210
+ loss_rand = nn.MSELoss()(x, x_)
211
+
212
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
213
+ return p_rand
214
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
215
+ return p_ones
216
+ else:
217
+ return best_params[0][0]
218
+
219
+
220
+ def init_linear_scale( # Symmetric scale. From the study folder
221
+ x: torch.Tensor,
222
+ **kwargs: Dict[str, Any],
223
+ ) -> torch.Tensor:
224
+ assert "bits" in kwargs, "bits must be provided."
225
+ assert "params" in kwargs, "params must be provided."
226
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
227
+
228
+ bits = kwargs.get('bits')
229
+ params = kwargs.get('params')
230
+ qtz_func = kwargs.get('qtz_func')
231
+
232
+ x_ = x.transpose(0, 1)
233
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
234
+ x_ = x_.transpose(0, 1)
235
+
236
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
237
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
238
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
239
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
240
+
241
+ eps = torch.finfo(torch.float32).eps
242
+
243
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
244
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
245
+
246
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
247
+
248
+ # Introduces some noise in scale
249
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
250
+ # scale = scale + 0.01 * torch.randn_like(scale)
251
+ return scale
252
+
253
+
254
+ def init_non_linear_regression_fit(
255
+ x: torch.Tensor,
256
+ **kwargs: Dict[str, Any],
257
+ ) -> torch.Tensor:
258
+
259
+ assert "params_list" in kwargs, "params list must be provided."
260
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
261
+ assert "p0" in kwargs, "p0 must be provided."
262
+ np_fit_func = kwargs.get('np_fit_func')
263
+ params_list = kwargs.get('params_list')
264
+ p0 = kwargs.get('p0')
265
+
266
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
267
+ popt, _ = curve_fit(
268
+ func,
269
+ xdata,
270
+ ydata,
271
+ maxfev=1000,
272
+ p0=p0,
273
+ method='lm'
274
+ )
275
+ return popt
276
+
277
+ # 1. Needs to convert the torch tensor to numpy tensor
278
+ xdata = x.cpu().numpy()
279
+
280
+ # 2. Sorts the data so that it makes it easier to fit to it
281
+ sorted_xdata = np.sort(xdata, axis=-1)
282
+
283
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
284
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
285
+
286
+ # 3. Finds the best parameters for each channel
287
+ try:
288
+ params = []
289
+ for i in range(sorted_xdata.shape[0]):
290
+ xdata_ = sorted_xdata[i]
291
+ p0_ = [p0[p][i] for p in params_list]
292
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
293
+ params.append(ch_params)
294
+
295
+ # 4. Builds the parameters
296
+ result = {}
297
+ for i, p in enumerate(params_list):
298
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
299
+
300
+ return result
301
+
302
+ except ValueError as e:
303
+ print(f"Could not fit the function with error: {e}")
304
+ print(f"Using fallback result...")
305
+ return {
306
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
307
+ }
308
+
309
+
310
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
311
+ val = torch.amin(x, dim=1)
312
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
313
+
314
+
315
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
316
+ # Calculate the original minimum and maximum values
317
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
318
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
319
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
320
+
321
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
322
+ return torch.ones_like(x_min)
323
+
324
+ # Calculate the scale factor
325
+ scale = (_max - _min) / (x_max - x_min)
326
+ return scale
327
+
328
+
329
+
330
+ ############## Quant ###############
331
+
332
+ @torch.enable_grad()
333
+ def learn_parameters(
334
+ x: torch.Tensor,
335
+ params: Dict[str, nn.Parameter],
336
+ qtz_func: nn.Module,
337
+ deqtz_func: nn.Module,
338
+ bits: int,
339
+ target_dtype: torch.dtype,
340
+ epochs: int = 1000,
341
+ early_stop: bool = True,
342
+ do_report: bool = False
343
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
344
+ loss_fn = nn.MSELoss()
345
+
346
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
347
+ # the order of magnitude of the loss divided by 2
348
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
349
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
350
+ loss = loss_fn(x, dequant)
351
+
352
+ base_lr = 0.1
353
+ exponent = int(np.floor(np.log10(loss.item())))
354
+ lr = base_lr * (10 ** (exponent // 2))
355
+
356
+ # Requires gradients in the parameters
357
+ for p in params.values():
358
+ p.requires_grad = True
359
+ p.grad = None
360
+
361
+ param_keys = list(params.keys())
362
+ param_values = list(params.values())
363
+
364
+ # Defines optimizer and loss function
365
+ optimizer = torch.optim.Adam(param_values, lr=lr)
366
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
367
+
368
+ # Contains the best loss and the best parameters
369
+ best_loss = float("inf")
370
+ best_params = None
371
+
372
+ # Used to stop the search early
373
+ min_delta = 1e-7
374
+ acc_loss = []
375
+ percent_epochs_before_stop = 0.1
376
+
377
+ for i in range(epochs):
378
+ optimizer.zero_grad()
379
+
380
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
381
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
382
+ loss = loss_fn(x, dequant)
383
+
384
+ if loss.isnan() or loss.isinf():
385
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
386
+
387
+ loss.backward()
388
+ optimizer.step()
389
+ scheduler.step()
390
+
391
+ acc_loss.append(loss.item())
392
+
393
+ # Reports loss every 10 steps
394
+ if i % 10 == 0 and do_report:
395
+ print(f"Epoch {i}: Loss {loss.item()}")
396
+
397
+ # Optimizes the parameter search by storing the best loss and the parameters
398
+ if loss.item() < best_loss:
399
+ best_loss = loss.item()
400
+ best_params = copy.deepcopy({
401
+ k: v for k, v in params.items() if k in param_keys
402
+ })
403
+
404
+ # We also stop the search if the loss has not considerably during the last 10% epochs
405
+ if early_stop:
406
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
407
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
408
+ break
409
+
410
+ # No longer requires gradients in the parameters
411
+ for p in best_params.values():
412
+ p.requires_grad = False
413
+ p.grad = None
414
+
415
+ if do_report:
416
+ return best_params, acc_loss
417
+ else:
418
+ return best_params
419
+
420
+
421
+ def quantize(
422
+ x: torch.Tensor,
423
+ params: Dict[str, nn.Parameter],
424
+ func: nn.Module,
425
+ bits: int,
426
+ target_dtype: torch.dtype = torch.int8
427
+ ) -> torch.Tensor:
428
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
429
+ x = x.transpose(0, 1) # Aligns shapes
430
+ x = func(x=x, **params)
431
+ x = x.transpose(0, 1)
432
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
433
+ return x
434
+
435
+
436
+ def dequantize(
437
+ x: torch.Tensor,
438
+ params: Dict[str, nn.Parameter],
439
+ func: nn.Module,
440
+ bits: int,
441
+ out_dtype: torch.dtype
442
+ ) -> torch.Tensor:
443
+ x = x.to(dtype=out_dtype)
444
+ x = x.transpose(0, 1)
445
+ x = func(x=x, **params)
446
+ x = x.transpose(0, 1)
447
+ return x
448
+
449
+
450
+ def round_func_BPDA(input):
451
+ # This is equivalent to replacing round function (non-differentiable) with
452
+ # an identity function (differentiable) only when backward.
453
+ forward_value = torch.round(input)
454
+ out = input.clone()
455
+ out.data = forward_value.data
456
+ return out
457
+
458
+
459
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
460
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
461
+
462
+
463
+
464
+ ############## Numpy ###############
465
+
466
+ def np_domain_guard(
467
+ x: np.ndarray,
468
+ min: float = None,
469
+ max: float = None,
470
+ posinf: float = None,
471
+ neginf: float = None,
472
+ nan: float = None
473
+ ) -> np.ndarray:
474
+ """Guard a tensor to a valid domain."""
475
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
476
+ if min is not None or max is not None:
477
+ x = np.clip(x, min, max)
478
+ return x
479
+
480
+
481
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
482
+ """Replace a number in a tensor with another number.
483
+
484
+ Args:
485
+ x (np.ndarray): The input tensor.
486
+ num (float): The number to replace.
487
+ to (float): The number to replace with.
488
+
489
+ Returns:
490
+ np.ndarray: The tensor with the number replaced.
491
+ """
492
+ return np.where(x == num, to, x)
493
+
494
+
495
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
496
+ """Guard the power operation to a valid domain."""
497
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
498
+
fn_gen/rnd_search_fb/15/loss.png ADDED
fn_gen/rnd_search_fb/15/quantization.png ADDED
fn_gen/rnd_search_fb/16/distortion.png ADDED
fn_gen/rnd_search_fb/16/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ tan(_0*x)/_s
2
+ atan(_s*x)/_0
fn_gen/rnd_search_fb/16/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.tan(domain_guard((params['_0'] * x), posinf=1, neginf=-1, nan=0)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.atan((params['_s'] * x)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.tan(np_domain_guard((_0 * x), posinf=1, neginf=-1, nan=0)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.arctan((_s * x)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/16/loss.png ADDED
fn_gen/rnd_search_fb/16/quantization.png ADDED
fn_gen/rnd_search_fb/17/distortion.png ADDED
fn_gen/rnd_search_fb/17/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ atan(_0*x)/_s
2
+ tan(_s*x)/_0
fn_gen/rnd_search_fb/17/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.atan((params['_0'] * x)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.tan(domain_guard((params['_s'] * x), posinf=1, neginf=-1, nan=0)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.arctan((_0 * x)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.tan(np_domain_guard((_s * x), posinf=1, neginf=-1, nan=0)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/17/loss.png ADDED
fn_gen/rnd_search_fb/17/quantization.png ADDED
fn_gen/rnd_search_fb/18/distortion.png ADDED
fn_gen/rnd_search_fb/18/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ acosh(_0*x)/_s
2
+ cosh(_s*x)/_0
fn_gen/rnd_search_fb/18/fn.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * torch.acosh(domain_guard((params['_0'] * x), min=1, nan=1)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return (torch.div(1, replace_num(params['_0'], num=0, to=10000)) * torch.cosh((params['_s'] * x)))
19
+
20
+
21
+ def init_space_search(
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+
26
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
27
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
28
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
29
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
30
+
31
+ def _search_param(tensors: List[torch.tensor], n_params):
32
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
33
+ torch_tensors = torch.stack(tensors)
34
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
35
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
36
+ mean = torch.mean(torch_tensors, dim=0)
37
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
38
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
39
+
40
+ def _calc(x, qtz_func, deqtz_func, **params):
41
+ x_ = x.transpose(0, 1)
42
+ x_ = qtz_func(x=x_, **params)
43
+ x_ = deqtz_func(x=x_, **params)
44
+ x_ = x_.transpose(0, 1)
45
+ return x_
46
+
47
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
48
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
49
+ assert "params_list" in kwargs, "params list must be provided."
50
+ assert "param" in kwargs, "param must be provided."
51
+
52
+ qtz_func = kwargs.get('qtz_func')
53
+ deqtz_func = kwargs.get('deqtz_func')
54
+ params_list = kwargs.get('params_list')
55
+ param = kwargs.get('param')
56
+
57
+ n_runs = 50 # Number of runs to try to find the best parameters
58
+ n_random_params = 50 # Number of random parameters to generate
59
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
60
+ max_initial = 10000 # Maximum value to initialize the parameters
61
+
62
+ # Initializes the parameters
63
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
64
+ params = _build_initial_param(x, max_initial, n_random_params)
65
+
66
+ # Performs the search
67
+ for _ in range(n_runs):
68
+
69
+ best_params = []
70
+ for param_ in params:
71
+ try:
72
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
73
+ loss_ones = nn.MSELoss()(x, x_)
74
+
75
+ if len(best_params) < n_best_to_pick:
76
+ best_params.append((param_, loss_ones.item()))
77
+ best_params = sorted(best_params, key=lambda x: x[1])
78
+ elif loss_ones < best_params[-1][1]:
79
+ best_params[-1] = (param_, loss_ones.item())
80
+ best_params = sorted(best_params, key=lambda x: x[1])
81
+
82
+ except Exception: # The parameters might not be valid for the function's domain
83
+ continue
84
+
85
+ # Generates new parameters around the mean
86
+ params = _search_param([p for p, _ in best_params], n_random_params)
87
+
88
+ # Checks if the best parameter is better than the init_ones
89
+ p_ones = init_ones(x, **kwargs)
90
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
91
+ loss_ones = nn.MSELoss()(x, x_)
92
+
93
+ # Checks if the best parameter is better than the init_rand
94
+ p_rand = init_rand(x, **kwargs)
95
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
96
+ loss_rand = nn.MSELoss()(x, x_)
97
+
98
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
99
+ return p_rand
100
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
101
+ return p_ones
102
+ else:
103
+ return best_params[0][0]
104
+
105
+
106
+ def init_linear_scale( # Symmetric scale. From the study folder
107
+ x: torch.Tensor,
108
+ **kwargs: Dict[str, Any],
109
+ ) -> torch.Tensor:
110
+ assert "bits" in kwargs, "bits must be provided."
111
+ assert "params" in kwargs, "params must be provided."
112
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
113
+
114
+ bits = kwargs.get('bits')
115
+ params = kwargs.get('params')
116
+ qtz_func = kwargs.get('qtz_func')
117
+
118
+ x_ = x.transpose(0, 1)
119
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
120
+ x_ = x_.transpose(0, 1)
121
+
122
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
123
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
124
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
125
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
126
+
127
+ eps = torch.finfo(torch.float32).eps
128
+
129
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
130
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
131
+
132
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
133
+
134
+ # Introduces some noise in scale
135
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
136
+ # scale = scale + 0.01 * torch.randn_like(scale)
137
+ return scale
138
+
139
+
140
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
141
+ params = {
142
+ '_0': init_space_search(x, qtz_func=quantization, deqtz_func=dequantization, param='_0', params_list=['_0', '_s'], **kwargs),
143
+ }
144
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
145
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
146
+
147
+ if 'post_init_hook' in kwargs:
148
+ kwargs['post_init_hook'](parameters=params)
149
+
150
+
151
+ if 'post_train_hook' in kwargs:
152
+ kwargs['post_train_hook'](parameters=params)
153
+
154
+ return params
155
+
156
+
157
+ ############### Numpy Qtz ###############
158
+
159
+
160
+ def np_quantization(x, _0, _s):
161
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np.arccosh(np_domain_guard((_0 * x), min=1, nan=1)))
162
+
163
+
164
+ def np_dequantization(x, _0, _s):
165
+ return (np.divide(1, np_replace_num(_0, num=0, to=10000)) * np.cosh((_s * x)))
166
+
167
+
168
+ def fit_func(x, _0, _s):
169
+ x_ = np_quantization(x, _0, _s)
170
+ x_ = np_dequantization(x_, _0, _s)
171
+ return x_
172
+
173
+
174
+
175
+ ############### HELPERS ###############
176
+
177
+ def domain_guard(
178
+ x: torch.Tensor,
179
+ min: float = None,
180
+ max: float = None,
181
+ posinf: float = None,
182
+ neginf: float = None,
183
+ nan: float = None
184
+ ) -> torch.Tensor:
185
+ """Guard a tensor to a valid domain."""
186
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
187
+ if min is not None or max is not None:
188
+ x = torch.clamp(x, min=min, max=max)
189
+ return x
190
+
191
+
192
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
193
+ """Replace a number in a tensor with another number.
194
+
195
+ Args:
196
+ x (torch.Tensor): The input tensor.
197
+ num (float): The number to replace.
198
+ to (float): The number to replace with.
199
+
200
+ Returns:
201
+ torch.Tensor: The tensor with the number replaced.
202
+ """
203
+ return torch.where(x == num, to, x)
204
+
205
+
206
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
207
+ """Guard the power operation to a valid domain."""
208
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
209
+
210
+
211
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
212
+ val = torch.amin(x, dim=1)
213
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
214
+
215
+
216
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
217
+ val = torch.amin(x, dim=1)
218
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
219
+
220
+
221
+ def init_space_search(
222
+ x: torch.Tensor,
223
+ **kwargs: Dict[str, Any],
224
+ ) -> torch.Tensor:
225
+
226
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
227
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
228
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
229
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
230
+
231
+ def _search_param(tensors: List[torch.tensor], n_params):
232
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
233
+ torch_tensors = torch.stack(tensors)
234
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
235
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
236
+ mean = torch.mean(torch_tensors, dim=0)
237
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
238
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
239
+
240
+ def _calc(x, qtz_func, deqtz_func, **params):
241
+ x_ = x.transpose(0, 1)
242
+ x_ = qtz_func(x=x_, **params)
243
+ x_ = deqtz_func(x=x_, **params)
244
+ x_ = x_.transpose(0, 1)
245
+ return x_
246
+
247
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
248
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
249
+ assert "params_list" in kwargs, "params list must be provided."
250
+ assert "param" in kwargs, "param must be provided."
251
+
252
+ qtz_func = kwargs.get('qtz_func')
253
+ deqtz_func = kwargs.get('deqtz_func')
254
+ params_list = kwargs.get('params_list')
255
+ param = kwargs.get('param')
256
+
257
+ n_runs = 50 # Number of runs to try to find the best parameters
258
+ n_random_params = 50 # Number of random parameters to generate
259
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
260
+ max_initial = 10000 # Maximum value to initialize the parameters
261
+
262
+ # Initializes the parameters
263
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
264
+ params = _build_initial_param(x, max_initial, n_random_params)
265
+
266
+ # Performs the search
267
+ for _ in range(n_runs):
268
+
269
+ best_params = []
270
+ for param_ in params:
271
+ try:
272
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
273
+ loss_ones = nn.MSELoss()(x, x_)
274
+
275
+ if len(best_params) < n_best_to_pick:
276
+ best_params.append((param_, loss_ones.item()))
277
+ best_params = sorted(best_params, key=lambda x: x[1])
278
+ elif loss_ones < best_params[-1][1]:
279
+ best_params[-1] = (param_, loss_ones.item())
280
+ best_params = sorted(best_params, key=lambda x: x[1])
281
+
282
+ except Exception: # The parameters might not be valid for the function's domain
283
+ continue
284
+
285
+ # Generates new parameters around the mean
286
+ params = _search_param([p for p, _ in best_params], n_random_params)
287
+
288
+ # Checks if the best parameter is better than the init_ones
289
+ p_ones = init_ones(x, **kwargs)
290
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
291
+ loss_ones = nn.MSELoss()(x, x_)
292
+
293
+ # Checks if the best parameter is better than the init_rand
294
+ p_rand = init_rand(x, **kwargs)
295
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
296
+ loss_rand = nn.MSELoss()(x, x_)
297
+
298
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
299
+ return p_rand
300
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
301
+ return p_ones
302
+ else:
303
+ return best_params[0][0]
304
+
305
+
306
+ def init_linear_scale( # Symmetric scale. From the study folder
307
+ x: torch.Tensor,
308
+ **kwargs: Dict[str, Any],
309
+ ) -> torch.Tensor:
310
+ assert "bits" in kwargs, "bits must be provided."
311
+ assert "params" in kwargs, "params must be provided."
312
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
313
+
314
+ bits = kwargs.get('bits')
315
+ params = kwargs.get('params')
316
+ qtz_func = kwargs.get('qtz_func')
317
+
318
+ x_ = x.transpose(0, 1)
319
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
320
+ x_ = x_.transpose(0, 1)
321
+
322
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
323
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
324
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
325
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
326
+
327
+ eps = torch.finfo(torch.float32).eps
328
+
329
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
330
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
331
+
332
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
333
+
334
+ # Introduces some noise in scale
335
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
336
+ # scale = scale + 0.01 * torch.randn_like(scale)
337
+ return scale
338
+
339
+
340
+ def init_non_linear_regression_fit(
341
+ x: torch.Tensor,
342
+ **kwargs: Dict[str, Any],
343
+ ) -> torch.Tensor:
344
+
345
+ assert "params_list" in kwargs, "params list must be provided."
346
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
347
+ assert "p0" in kwargs, "p0 must be provided."
348
+ np_fit_func = kwargs.get('np_fit_func')
349
+ params_list = kwargs.get('params_list')
350
+ p0 = kwargs.get('p0')
351
+
352
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
353
+ popt, _ = curve_fit(
354
+ func,
355
+ xdata,
356
+ ydata,
357
+ maxfev=1000,
358
+ p0=p0,
359
+ method='lm'
360
+ )
361
+ return popt
362
+
363
+ # 1. Needs to convert the torch tensor to numpy tensor
364
+ xdata = x.cpu().numpy()
365
+
366
+ # 2. Sorts the data so that it makes it easier to fit to it
367
+ sorted_xdata = np.sort(xdata, axis=-1)
368
+
369
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
370
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
371
+
372
+ # 3. Finds the best parameters for each channel
373
+ try:
374
+ params = []
375
+ for i in range(sorted_xdata.shape[0]):
376
+ xdata_ = sorted_xdata[i]
377
+ p0_ = [p0[p][i] for p in params_list]
378
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
379
+ params.append(ch_params)
380
+
381
+ # 4. Builds the parameters
382
+ result = {}
383
+ for i, p in enumerate(params_list):
384
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
385
+
386
+ return result
387
+
388
+ except ValueError as e:
389
+ print(f"Could not fit the function with error: {e}")
390
+ print(f"Using fallback result...")
391
+ return {
392
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
393
+ }
394
+
395
+
396
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
397
+ val = torch.amin(x, dim=1)
398
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
399
+
400
+
401
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
402
+ # Calculate the original minimum and maximum values
403
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
404
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
405
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
406
+
407
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
408
+ return torch.ones_like(x_min)
409
+
410
+ # Calculate the scale factor
411
+ scale = (_max - _min) / (x_max - x_min)
412
+ return scale
413
+
414
+
415
+
416
+ ############## Quant ###############
417
+
418
+ @torch.enable_grad()
419
+ def learn_parameters(
420
+ x: torch.Tensor,
421
+ params: Dict[str, nn.Parameter],
422
+ qtz_func: nn.Module,
423
+ deqtz_func: nn.Module,
424
+ bits: int,
425
+ target_dtype: torch.dtype,
426
+ epochs: int = 1000,
427
+ early_stop: bool = True,
428
+ do_report: bool = False
429
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
430
+ loss_fn = nn.MSELoss()
431
+
432
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
433
+ # the order of magnitude of the loss divided by 2
434
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
435
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
436
+ loss = loss_fn(x, dequant)
437
+
438
+ base_lr = 0.1
439
+ exponent = int(np.floor(np.log10(loss.item())))
440
+ lr = base_lr * (10 ** (exponent // 2))
441
+
442
+ # Requires gradients in the parameters
443
+ for p in params.values():
444
+ p.requires_grad = True
445
+ p.grad = None
446
+
447
+ param_keys = list(params.keys())
448
+ param_values = list(params.values())
449
+
450
+ # Defines optimizer and loss function
451
+ optimizer = torch.optim.Adam(param_values, lr=lr)
452
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
453
+
454
+ # Contains the best loss and the best parameters
455
+ best_loss = float("inf")
456
+ best_params = None
457
+
458
+ # Used to stop the search early
459
+ min_delta = 1e-7
460
+ acc_loss = []
461
+ percent_epochs_before_stop = 0.1
462
+
463
+ for i in range(epochs):
464
+ optimizer.zero_grad()
465
+
466
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
467
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
468
+ loss = loss_fn(x, dequant)
469
+
470
+ if loss.isnan() or loss.isinf():
471
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
472
+
473
+ loss.backward()
474
+ optimizer.step()
475
+ scheduler.step()
476
+
477
+ acc_loss.append(loss.item())
478
+
479
+ # Reports loss every 10 steps
480
+ if i % 10 == 0 and do_report:
481
+ print(f"Epoch {i}: Loss {loss.item()}")
482
+
483
+ # Optimizes the parameter search by storing the best loss and the parameters
484
+ if loss.item() < best_loss:
485
+ best_loss = loss.item()
486
+ best_params = copy.deepcopy({
487
+ k: v for k, v in params.items() if k in param_keys
488
+ })
489
+
490
+ # We also stop the search if the loss has not considerably during the last 10% epochs
491
+ if early_stop:
492
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
493
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
494
+ break
495
+
496
+ # No longer requires gradients in the parameters
497
+ for p in best_params.values():
498
+ p.requires_grad = False
499
+ p.grad = None
500
+
501
+ if do_report:
502
+ return best_params, acc_loss
503
+ else:
504
+ return best_params
505
+
506
+
507
+ def quantize(
508
+ x: torch.Tensor,
509
+ params: Dict[str, nn.Parameter],
510
+ func: nn.Module,
511
+ bits: int,
512
+ target_dtype: torch.dtype = torch.int8
513
+ ) -> torch.Tensor:
514
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
515
+ x = x.transpose(0, 1) # Aligns shapes
516
+ x = func(x=x, **params)
517
+ x = x.transpose(0, 1)
518
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
519
+ return x
520
+
521
+
522
+ def dequantize(
523
+ x: torch.Tensor,
524
+ params: Dict[str, nn.Parameter],
525
+ func: nn.Module,
526
+ bits: int,
527
+ out_dtype: torch.dtype
528
+ ) -> torch.Tensor:
529
+ x = x.to(dtype=out_dtype)
530
+ x = x.transpose(0, 1)
531
+ x = func(x=x, **params)
532
+ x = x.transpose(0, 1)
533
+ return x
534
+
535
+
536
+ def round_func_BPDA(input):
537
+ # This is equivalent to replacing round function (non-differentiable) with
538
+ # an identity function (differentiable) only when backward.
539
+ forward_value = torch.round(input)
540
+ out = input.clone()
541
+ out.data = forward_value.data
542
+ return out
543
+
544
+
545
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
546
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
547
+
548
+
549
+
550
+ ############## Numpy ###############
551
+
552
+ def np_domain_guard(
553
+ x: np.ndarray,
554
+ min: float = None,
555
+ max: float = None,
556
+ posinf: float = None,
557
+ neginf: float = None,
558
+ nan: float = None
559
+ ) -> np.ndarray:
560
+ """Guard a tensor to a valid domain."""
561
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
562
+ if min is not None or max is not None:
563
+ x = np.clip(x, min, max)
564
+ return x
565
+
566
+
567
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
568
+ """Replace a number in a tensor with another number.
569
+
570
+ Args:
571
+ x (np.ndarray): The input tensor.
572
+ num (float): The number to replace.
573
+ to (float): The number to replace with.
574
+
575
+ Returns:
576
+ np.ndarray: The tensor with the number replaced.
577
+ """
578
+ return np.where(x == num, to, x)
579
+
580
+
581
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
582
+ """Guard the power operation to a valid domain."""
583
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
584
+
fn_gen/rnd_search_fb/18/loss.png ADDED
fn_gen/rnd_search_fb/18/quantization.png ADDED
fn_gen/rnd_search_fb/2/distortion.png ADDED
fn_gen/rnd_search_fb/2/expressions.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ x**3/_s
2
+ (_s*x)**(1/3)
fn_gen/rnd_search_fb/2/fn.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+ from torch import amin # Necessary for arcsin
5
+ import copy
6
+ import torch.nn as nn
7
+ import numpy as np
8
+
9
+ from scipy.optimize import curve_fit
10
+ from typing import Dict, Any, Tuple, List, Callable
11
+
12
+
13
+ def quantization(x, **params):
14
+ return (torch.div(1, replace_num(params['_s'], num=0, to=10000)) * guarded_torch_power(x, torch.tensor(3)))
15
+
16
+
17
+ def dequantization(x, **params):
18
+ return guarded_torch_power((params['_s'] * x), 1 / 3)
19
+
20
+
21
+ def init_linear_scale( # Symmetric scale. From the study folder
22
+ x: torch.Tensor,
23
+ **kwargs: Dict[str, Any],
24
+ ) -> torch.Tensor:
25
+ assert "bits" in kwargs, "bits must be provided."
26
+ assert "params" in kwargs, "params must be provided."
27
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
28
+
29
+ bits = kwargs.get('bits')
30
+ params = kwargs.get('params')
31
+ qtz_func = kwargs.get('qtz_func')
32
+
33
+ x_ = x.transpose(0, 1)
34
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
35
+ x_ = x_.transpose(0, 1)
36
+
37
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
38
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
39
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
40
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
41
+
42
+ eps = torch.finfo(torch.float32).eps
43
+
44
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
45
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
46
+
47
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
48
+
49
+ # Introduces some noise in scale
50
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
51
+ # scale = scale + 0.01 * torch.randn_like(scale)
52
+ return scale
53
+
54
+
55
+ def init_params(x: torch.Tensor, **kwargs: Dict[str, Any]) -> Dict[str, nn.Parameter]:
56
+ params = {
57
+ }
58
+ params['_s'] = init_linear_scale(x, params=params, qtz_func=quantization, **kwargs)
59
+ params = {k: nn.Parameter(v, requires_grad=False) for k, v in params.items()}
60
+
61
+ if 'post_init_hook' in kwargs:
62
+ kwargs['post_init_hook'](parameters=params)
63
+
64
+
65
+ if 'post_train_hook' in kwargs:
66
+ kwargs['post_train_hook'](parameters=params)
67
+
68
+ return params
69
+
70
+
71
+ ############### Numpy Qtz ###############
72
+
73
+
74
+ def np_quantization(x, _s):
75
+ return (np.divide(1, np_replace_num(_s, num=0, to=10000)) * np_guarded_power(x, np.array(3)))
76
+
77
+
78
+ def np_dequantization(x, _s):
79
+ return np_guarded_power((_s * x), 1 / 3)
80
+
81
+
82
+ def fit_func(x, _s):
83
+ x_ = np_quantization(x, _s)
84
+ x_ = np_dequantization(x_, _s)
85
+ return x_
86
+
87
+
88
+
89
+ ############### HELPERS ###############
90
+
91
+ def domain_guard(
92
+ x: torch.Tensor,
93
+ min: float = None,
94
+ max: float = None,
95
+ posinf: float = None,
96
+ neginf: float = None,
97
+ nan: float = None
98
+ ) -> torch.Tensor:
99
+ """Guard a tensor to a valid domain."""
100
+ x = torch.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
101
+ if min is not None or max is not None:
102
+ x = torch.clamp(x, min=min, max=max)
103
+ return x
104
+
105
+
106
+ def replace_num(x: torch.Tensor, num: float, to: float) -> torch.Tensor:
107
+ """Replace a number in a tensor with another number.
108
+
109
+ Args:
110
+ x (torch.Tensor): The input tensor.
111
+ num (float): The number to replace.
112
+ to (float): The number to replace with.
113
+
114
+ Returns:
115
+ torch.Tensor: The tensor with the number replaced.
116
+ """
117
+ return torch.where(x == num, to, x)
118
+
119
+
120
+ def guarded_torch_power(x: torch.Tensor, exp: float) -> torch.Tensor:
121
+ """Guard the power operation to a valid domain."""
122
+ return torch.pow(x, exp) if exp >= 1 else torch.pow(torch.relu(x), exp)
123
+
124
+
125
+ def init_ones(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
126
+ val = torch.amin(x, dim=1)
127
+ return torch.ones_like(val, dtype=torch.float32, device=x.device)
128
+
129
+
130
+ def init_rand(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
131
+ val = torch.amin(x, dim=1)
132
+ return torch.randn_like(val, dtype=torch.float32, device=x.device)
133
+
134
+
135
+ def init_space_search(
136
+ x: torch.Tensor,
137
+ **kwargs: Dict[str, Any],
138
+ ) -> torch.Tensor:
139
+
140
+ def _build_initial_param(tensor: torch.Tensor, max_initial: int, n_params: int):
141
+ """Generates the initial set of parameters. The first iteration generates 10 times more parameters."""
142
+ for _ in range(n_params * 10): # The first iteration generates 10 times more parameters
143
+ yield init_rand(tensor) * max_initial # Generates n_params in range [-max_initial, max_initial]
144
+
145
+ def _search_param(tensors: List[torch.tensor], n_params):
146
+ """Takes the best parameters and generates new parameters around the mean of the best parameters."""
147
+ torch_tensors = torch.stack(tensors)
148
+ min_vals, max_vals = torch.aminmax(torch_tensors, dim=0)
149
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
150
+ mean = torch.mean(torch_tensors, dim=0)
151
+ for _ in range(n_params): # Generates n_params around the mean of the tensors
152
+ yield torch.randn_like(min_vals) * abs_max_val_per_ch + mean
153
+
154
+ def _calc(x, qtz_func, deqtz_func, **params):
155
+ x_ = x.transpose(0, 1)
156
+ x_ = qtz_func(x=x_, **params)
157
+ x_ = deqtz_func(x=x_, **params)
158
+ x_ = x_.transpose(0, 1)
159
+ return x_
160
+
161
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
162
+ assert "deqtz_func" in kwargs, "deqtz_func must be provided."
163
+ assert "params_list" in kwargs, "params list must be provided."
164
+ assert "param" in kwargs, "param must be provided."
165
+
166
+ qtz_func = kwargs.get('qtz_func')
167
+ deqtz_func = kwargs.get('deqtz_func')
168
+ params_list = kwargs.get('params_list')
169
+ param = kwargs.get('param')
170
+
171
+ n_runs = 50 # Number of runs to try to find the best parameters
172
+ n_random_params = 50 # Number of random parameters to generate
173
+ n_best_to_pick = 5 # Number of best parameters to pick after each run
174
+ max_initial = 10000 # Maximum value to initialize the parameters
175
+
176
+ # Initializes the parameters
177
+ base_params = { p: init_ones(x, **kwargs) for p in params_list if p != param }
178
+ params = _build_initial_param(x, max_initial, n_random_params)
179
+
180
+ # Performs the search
181
+ for _ in range(n_runs):
182
+
183
+ best_params = []
184
+ for param_ in params:
185
+ try:
186
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: param_})
187
+ loss_ones = nn.MSELoss()(x, x_)
188
+
189
+ if len(best_params) < n_best_to_pick:
190
+ best_params.append((param_, loss_ones.item()))
191
+ best_params = sorted(best_params, key=lambda x: x[1])
192
+ elif loss_ones < best_params[-1][1]:
193
+ best_params[-1] = (param_, loss_ones.item())
194
+ best_params = sorted(best_params, key=lambda x: x[1])
195
+
196
+ except Exception: # The parameters might not be valid for the function's domain
197
+ continue
198
+
199
+ # Generates new parameters around the mean
200
+ params = _search_param([p for p, _ in best_params], n_random_params)
201
+
202
+ # Checks if the best parameter is better than the init_ones
203
+ p_ones = init_ones(x, **kwargs)
204
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_ones})
205
+ loss_ones = nn.MSELoss()(x, x_)
206
+
207
+ # Checks if the best parameter is better than the init_rand
208
+ p_rand = init_rand(x, **kwargs)
209
+ x_ = _calc(x, qtz_func, deqtz_func, **base_params, **{param: p_rand})
210
+ loss_rand = nn.MSELoss()(x, x_)
211
+
212
+ if loss_rand < best_params[0][1] and loss_rand < loss_ones:
213
+ return p_rand
214
+ elif loss_ones < best_params[0][1] and loss_ones < loss_rand:
215
+ return p_ones
216
+ else:
217
+ return best_params[0][0]
218
+
219
+
220
+ def init_linear_scale( # Symmetric scale. From the study folder
221
+ x: torch.Tensor,
222
+ **kwargs: Dict[str, Any],
223
+ ) -> torch.Tensor:
224
+ assert "bits" in kwargs, "bits must be provided."
225
+ assert "params" in kwargs, "params must be provided."
226
+ assert "qtz_func" in kwargs, "qtz_func must be provided."
227
+
228
+ bits = kwargs.get('bits')
229
+ params = kwargs.get('params')
230
+ qtz_func = kwargs.get('qtz_func')
231
+
232
+ x_ = x.transpose(0, 1)
233
+ x_ = qtz_func(x=x_, **params, _s=init_ones(x, **kwargs))
234
+ x_ = x_.transpose(0, 1)
235
+
236
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
237
+ min_vals, max_vals = torch.aminmax(x_, dim=1)
238
+ min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
239
+ max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
240
+
241
+ eps = torch.finfo(torch.float32).eps
242
+
243
+ abs_max_val_per_ch = torch.max(-min_vals, max_vals)
244
+ scale = abs_max_val_per_ch / (float(quant_max - quant_min) / 2)
245
+
246
+ scale = torch.clamp(scale, min=eps).to(dtype=torch.float32, device=min_vals.device)
247
+
248
+ # Introduces some noise in scale
249
+ # If I don't introduce noise, the accuracy is going to be 0.0 and not learn anything
250
+ # scale = scale + 0.01 * torch.randn_like(scale)
251
+ return scale
252
+
253
+
254
+ def init_non_linear_regression_fit(
255
+ x: torch.Tensor,
256
+ **kwargs: Dict[str, Any],
257
+ ) -> torch.Tensor:
258
+
259
+ assert "params_list" in kwargs, "params list must be provided."
260
+ assert "np_fit_func" in kwargs, "np_fit_func must be provided."
261
+ assert "p0" in kwargs, "p0 must be provided."
262
+ np_fit_func = kwargs.get('np_fit_func')
263
+ params_list = kwargs.get('params_list')
264
+ p0 = kwargs.get('p0')
265
+
266
+ def _fit(xdata: np.ndarray, ydata: np.ndarray, func: Callable, p0: List[float]):
267
+ popt, _ = curve_fit(
268
+ func,
269
+ xdata,
270
+ ydata,
271
+ maxfev=1000,
272
+ p0=p0,
273
+ method='lm'
274
+ )
275
+ return popt
276
+
277
+ # 1. Needs to convert the torch tensor to numpy tensor
278
+ xdata = x.cpu().numpy()
279
+
280
+ # 2. Sorts the data so that it makes it easier to fit to it
281
+ sorted_xdata = np.sort(xdata, axis=-1)
282
+
283
+ p0 = {k: v.cpu().numpy() for k, v in p0.items()}
284
+ params_list = sorted(params_list) # We need to make sure that it matches the numpy fit func arg order
285
+
286
+ # 3. Finds the best parameters for each channel
287
+ try:
288
+ params = []
289
+ for i in range(sorted_xdata.shape[0]):
290
+ xdata_ = sorted_xdata[i]
291
+ p0_ = [p0[p][i] for p in params_list]
292
+ ch_params = _fit(xdata_, xdata_, np_fit_func, p0_)
293
+ params.append(ch_params)
294
+
295
+ # 4. Builds the parameters
296
+ result = {}
297
+ for i, p in enumerate(params_list):
298
+ result[p] = torch.tensor([p_[i] for p_ in params], dtype=torch.float32).to(x.device)
299
+
300
+ return result
301
+
302
+ except ValueError as e:
303
+ print(f"Could not fit the function with error: {e}")
304
+ print(f"Using fallback result...")
305
+ return {
306
+ k: torch.tensor(v, dtype=torch.float32).to(x.device) for k, v in p0.items()
307
+ }
308
+
309
+
310
+ def init_zeros(x: torch.Tensor, **kwargs: Dict[str, Any]) -> torch.Tensor:
311
+ val = torch.amin(x, dim=1)
312
+ return torch.zeros_like(val, dtype=torch.float32, device=x.device)
313
+
314
+
315
+ def init_inner_scale(tensor: torch.Tensor, _min: float = torch.inf, _max: float = torch.inf) -> torch.Tensor:
316
+ # Calculate the original minimum and maximum values
317
+ min_vals, max_vals = torch.aminmax(tensor, dim=-1)
318
+ x_min = torch.min(min_vals, torch.zeros_like(min_vals))
319
+ x_max = torch.max(max_vals, torch.zeros_like(max_vals))
320
+
321
+ if _max is torch.inf: # We do not need to scale the tensor. Just need to move it
322
+ return torch.ones_like(x_min)
323
+
324
+ # Calculate the scale factor
325
+ scale = (_max - _min) / (x_max - x_min)
326
+ return scale
327
+
328
+
329
+
330
+ ############## Quant ###############
331
+
332
+ @torch.enable_grad()
333
+ def learn_parameters(
334
+ x: torch.Tensor,
335
+ params: Dict[str, nn.Parameter],
336
+ qtz_func: nn.Module,
337
+ deqtz_func: nn.Module,
338
+ bits: int,
339
+ target_dtype: torch.dtype,
340
+ epochs: int = 1000,
341
+ early_stop: bool = True,
342
+ do_report: bool = False
343
+ ) -> Tuple[Dict[str, nn.Parameter], torch.Tensor]:
344
+ loss_fn = nn.MSELoss()
345
+
346
+ # Determines the initial learning rate by computing the initial loss and multiplying it by
347
+ # the order of magnitude of the loss divided by 2
348
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
349
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
350
+ loss = loss_fn(x, dequant)
351
+
352
+ base_lr = 0.1
353
+ exponent = int(np.floor(np.log10(loss.item())))
354
+ lr = base_lr * (10 ** (exponent // 2))
355
+
356
+ # Requires gradients in the parameters
357
+ for p in params.values():
358
+ p.requires_grad = True
359
+ p.grad = None
360
+
361
+ param_keys = list(params.keys())
362
+ param_values = list(params.values())
363
+
364
+ # Defines optimizer and loss function
365
+ optimizer = torch.optim.Adam(param_values, lr=lr)
366
+ scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0.01, total_iters=epochs // 10)
367
+
368
+ # Contains the best loss and the best parameters
369
+ best_loss = float("inf")
370
+ best_params = None
371
+
372
+ # Used to stop the search early
373
+ min_delta = 1e-7
374
+ acc_loss = []
375
+ percent_epochs_before_stop = 0.1
376
+
377
+ for i in range(epochs):
378
+ optimizer.zero_grad()
379
+
380
+ quant = quantize(x, params, qtz_func, bits, target_dtype)
381
+ dequant = dequantize(quant, params, deqtz_func, bits, x.dtype)
382
+ loss = loss_fn(x, dequant)
383
+
384
+ if loss.isnan() or loss.isinf():
385
+ raise Exception("Loss is NaN or Inf. Stopping the search.")
386
+
387
+ loss.backward()
388
+ optimizer.step()
389
+ scheduler.step()
390
+
391
+ acc_loss.append(loss.item())
392
+
393
+ # Reports loss every 10 steps
394
+ if i % 10 == 0 and do_report:
395
+ print(f"Epoch {i}: Loss {loss.item()}")
396
+
397
+ # Optimizes the parameter search by storing the best loss and the parameters
398
+ if loss.item() < best_loss:
399
+ best_loss = loss.item()
400
+ best_params = copy.deepcopy({
401
+ k: v for k, v in params.items() if k in param_keys
402
+ })
403
+
404
+ # We also stop the search if the loss has not considerably during the last 10% epochs
405
+ if early_stop:
406
+ epochs_before_stop = int(epochs * percent_epochs_before_stop)
407
+ if i > epochs_before_stop and abs(acc_loss[i - epochs_before_stop] - acc_loss[i]) < min_delta:
408
+ break
409
+
410
+ # No longer requires gradients in the parameters
411
+ for p in best_params.values():
412
+ p.requires_grad = False
413
+ p.grad = None
414
+
415
+ if do_report:
416
+ return best_params, acc_loss
417
+ else:
418
+ return best_params
419
+
420
+
421
+ def quantize(
422
+ x: torch.Tensor,
423
+ params: Dict[str, nn.Parameter],
424
+ func: nn.Module,
425
+ bits: int,
426
+ target_dtype: torch.dtype = torch.int8
427
+ ) -> torch.Tensor:
428
+ quant_min, quant_max = get_min_max_from_bits_signed(bits)
429
+ x = x.transpose(0, 1) # Aligns shapes
430
+ x = func(x=x, **params)
431
+ x = x.transpose(0, 1)
432
+ x = torch.clamp(round_func_BPDA(x), quant_min, quant_max).to(target_dtype)
433
+ return x
434
+
435
+
436
+ def dequantize(
437
+ x: torch.Tensor,
438
+ params: Dict[str, nn.Parameter],
439
+ func: nn.Module,
440
+ bits: int,
441
+ out_dtype: torch.dtype
442
+ ) -> torch.Tensor:
443
+ x = x.to(dtype=out_dtype)
444
+ x = x.transpose(0, 1)
445
+ x = func(x=x, **params)
446
+ x = x.transpose(0, 1)
447
+ return x
448
+
449
+
450
+ def round_func_BPDA(input):
451
+ # This is equivalent to replacing round function (non-differentiable) with
452
+ # an identity function (differentiable) only when backward.
453
+ forward_value = torch.round(input)
454
+ out = input.clone()
455
+ out.data = forward_value.data
456
+ return out
457
+
458
+
459
+ def get_min_max_from_bits_signed(bit_width: int) -> Tuple[int, int]:
460
+ return -2 ** (bit_width - 1), 2 ** (bit_width - 1) - 1
461
+
462
+
463
+
464
+ ############## Numpy ###############
465
+
466
+ def np_domain_guard(
467
+ x: np.ndarray,
468
+ min: float = None,
469
+ max: float = None,
470
+ posinf: float = None,
471
+ neginf: float = None,
472
+ nan: float = None
473
+ ) -> np.ndarray:
474
+ """Guard a tensor to a valid domain."""
475
+ x = np.nan_to_num(x, posinf=posinf, neginf=neginf, nan=nan)
476
+ if min is not None or max is not None:
477
+ x = np.clip(x, min, max)
478
+ return x
479
+
480
+
481
+ def np_replace_num(x: np.ndarray, num: float, to: float) -> np.ndarray:
482
+ """Replace a number in a tensor with another number.
483
+
484
+ Args:
485
+ x (np.ndarray): The input tensor.
486
+ num (float): The number to replace.
487
+ to (float): The number to replace with.
488
+
489
+ Returns:
490
+ np.ndarray: The tensor with the number replaced.
491
+ """
492
+ return np.where(x == num, to, x)
493
+
494
+
495
+ def np_guarded_power(x: np.ndarray, exp: float) -> np.ndarray:
496
+ """Guard the power operation to a valid domain."""
497
+ return np.power(x, exp) if exp >= 1 else np.power(np.maximum(x, 0), exp)
498
+
fn_gen/rnd_search_fb/2/loss.png ADDED
fn_gen/rnd_search_fb/2/quantization.png ADDED