DisgustingOzil
commited on
Commit
•
9a3b152
1
Parent(s):
366a093
Update README.md
Browse files
README.md
CHANGED
@@ -32,44 +32,86 @@ import gradio as gr
|
|
32 |
from transformers import AutoTokenizer
|
33 |
from peft import AutoPeftModelForCausalLM
|
34 |
import torch
|
|
|
35 |
|
36 |
-
# Assuming the model and tokenizer are correctly set up as per your provided code.
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
"DisgustingOzil/Mistral_summarizer",
|
41 |
load_in_4bit=load_in_4bit,
|
42 |
torch_dtype=torch.float16,
|
43 |
).to("cuda")
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
summary_prompt = f"""Below is a text that needs to be summarized. Based on the input, write a good summary which summarize all main points.
|
47 |
|
48 |
### Text:
|
49 |
{text}
|
50 |
|
51 |
### Summary:
|
52 |
-
"""
|
53 |
|
54 |
inputs = tokenizer([summary_prompt], return_tensors="pt").to("cuda")
|
55 |
-
outputs = model.generate(**inputs, max_new_tokens=
|
56 |
summary = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
57 |
summary_start_index = summary[0].find("### Summary:")
|
58 |
summary_text = summary[0][summary_start_index:].replace("### Summary:", "").strip()
|
59 |
return summary_text
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
iface = gr.Interface(
|
63 |
fn=summarize_text,
|
64 |
-
inputs=gr.Textbox(lines=10, label="Input Text"),
|
65 |
outputs=gr.Textbox(label="Summary"),
|
66 |
title="Text Summarization",
|
67 |
-
description="Enter text to summarize based on Maxwell's equations and related concepts."
|
68 |
)
|
69 |
|
70 |
# Launch the app
|
71 |
if __name__ == "__main__":
|
72 |
-
iface.launch()
|
|
|
73 |
|
74 |
|
75 |
|
|
|
32 |
from transformers import AutoTokenizer
|
33 |
from peft import AutoPeftModelForCausalLM
|
34 |
import torch
|
35 |
+
import anthropic
|
36 |
|
37 |
+
# Assuming the model and tokenizer for Mistral are correctly set up as per your provided code.
|
38 |
+
# Let's also assume you have a way to call the Anthropic model, perhaps via an API or another library.
|
39 |
+
load_in_4bit = True
|
40 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
41 |
"DisgustingOzil/Mistral_summarizer",
|
42 |
load_in_4bit=load_in_4bit,
|
43 |
torch_dtype=torch.float16,
|
44 |
).to("cuda")
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("DisgustingOzil/Mistral_summarizer")
|
46 |
+
def summarize_with_mistral(text):
|
47 |
+
|
48 |
+
|
49 |
summary_prompt = f"""Below is a text that needs to be summarized. Based on the input, write a good summary which summarize all main points.
|
50 |
|
51 |
### Text:
|
52 |
{text}
|
53 |
|
54 |
### Summary:
|
55 |
+
""" # The summary part is left empty for generation
|
56 |
|
57 |
inputs = tokenizer([summary_prompt], return_tensors="pt").to("cuda")
|
58 |
+
outputs = model.generate(**inputs, max_new_tokens=150, use_cache=True)
|
59 |
summary = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
60 |
summary_start_index = summary[0].find("### Summary:")
|
61 |
summary_text = summary[0][summary_start_index:].replace("### Summary:", "").strip()
|
62 |
return summary_text
|
63 |
+
summary_1=""
|
64 |
+
def summarize_with_anthropic(text):
|
65 |
+
API_KEY="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"
|
66 |
+
|
67 |
+
client = anthropic.Anthropic(
|
68 |
+
# defaults to os.environ.get("ANTHROPIC_API_KEY")
|
69 |
+
api_key=API_KEY,
|
70 |
+
)
|
71 |
+
message = client.messages.create(
|
72 |
+
model="claude-3-haiku-20240307",
|
73 |
+
max_tokens=3214,
|
74 |
+
temperature=0,
|
75 |
+
system="Create Good summary explaining all key points in detail, easy and understandable way",
|
76 |
+
messages=[
|
77 |
+
{
|
78 |
+
"role": "user",
|
79 |
+
"content": [
|
80 |
+
{
|
81 |
+
"type": "text",
|
82 |
+
"text": text
|
83 |
+
}
|
84 |
+
]
|
85 |
+
}
|
86 |
+
]
|
87 |
+
)
|
88 |
+
# Placeholder function to represent summarization with an Anthropic model.
|
89 |
+
# This should be replaced with actual API calls or function calls to the Anthropic model.
|
90 |
+
# summary_1=message.content[0]
|
91 |
+
summary=message.content[0]
|
92 |
+
return summary.text
|
93 |
+
|
94 |
+
def summarize_text(text, model_choice):
|
95 |
+
if model_choice == "Mistral 7b":
|
96 |
+
return summarize_with_mistral(text)
|
97 |
+
elif model_choice == "Claude-3-Haiku":
|
98 |
+
return summarize_with_anthropic(text)
|
99 |
+
else:
|
100 |
+
return "Invalid model choice."
|
101 |
+
|
102 |
+
# Define the Gradio interface with a dropdown for model selection
|
103 |
iface = gr.Interface(
|
104 |
fn=summarize_text,
|
105 |
+
inputs=[gr.Textbox(lines=10, label="Input Text"), gr.Dropdown(choices=["Mistral 7b", "Claude-3-Haiku"], label="Model Choice")],
|
106 |
outputs=gr.Textbox(label="Summary"),
|
107 |
title="Text Summarization",
|
108 |
+
description="Enter text to summarize based on Maxwell's equations and related concepts. Select a model for summarization."
|
109 |
)
|
110 |
|
111 |
# Launch the app
|
112 |
if __name__ == "__main__":
|
113 |
+
iface.launch(debug=True)
|
114 |
+
|
115 |
|
116 |
|
117 |
|